K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2015

Ta có M > 0 <=> x(x - 3) > 0

Xét 2 trường hợp

Trường hợp 1: x > 0 và x - 3 > 0 => x > 3

Trường hợp 2: x < 0 và x - 3 < 0 => x < 0

Vậy với x > 3 và x < 0 thì M > 0

NV
27 tháng 3 2021

Đặt \(x^2=t\ge0\Rightarrow f\left(t\right)=t^2-\left(2m+1\right)t+m+3=0\) (1)

Pt đã cho có 4 nghiệm pb khi (1) có 2 nghiệm pb đều dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(2m+1\right)^2-4\left(m+3\right)>0\\t_1+t_2=2m+1>0\\t_1t_2=m+3>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{\sqrt{11}}{2}\)

Không mất tính tổng quát, giả sử 2 nghiệm dương của (1) là \(t_1< t_2\)

Khi đó 4 nghiệm của pt đã cho là: \(-\sqrt{t_2}< -\sqrt{t_1}< \sqrt{t_1}< \sqrt{t_2}\)

Do đó điều kiện đề bài tương đương:

\(\left\{{}\begin{matrix}-\sqrt{t_2}< -2\\-\sqrt{t_1}>-1\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}t_2>4\\t_1< 1\end{matrix}\right.\)

Bài toàn trở thành: tìm m để (1) có 2 nghiệm dương pb thỏa mãn: \(t_1< 1< 4< t_2\)

\(\Rightarrow\left\{{}\begin{matrix}1.f\left(1\right)< 0\\1.f\left(4\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}1-\left(2m+1\right)+m+3< 0\\16-4\left(2m+1\right)+m+3< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>3\\m>\dfrac{15}{7}\end{matrix}\right.\) \(\Rightarrow m>3\)

Kết hợp \(m>\dfrac{\sqrt{11}}{2}\Rightarrow m>3\)

16 tháng 9 2017

Số 2 lớn hơn mọi giá trị khác của hàm số f(x) = sinx với tập xác định D = R nhưng 2 không phải là giá trị lớn nhất của hàm số này (giá trị lớn nhất là 1); vì vậy A sai. Cũng như vậy B sai với f(x) = sinx, D = R, M = 2. Phát biểu C tự mâu thuẫn: vì M = f( x 0 ),  x 0  ∈ D nên hay không xảy ra M > f(x), ∀x ∈ D.

Đáp án: D

3 tháng 5 2018

x – 2 = 3m + 4

⇔x = 3m + 6

Phương trình x – 2 = 3m + 4 có nghiệm lớn hơn 3 khi và chỉ khi: 3m + 6 > 3.

Giải: 3m + 6 > 3 có m > -1

Vậy với m > -1 thì phương trình ẩn x là x – 2 = 3m + 4 có nghiệm lớn hơn 3.

28 tháng 8 2018

a) Khi M = 0 \(\Leftrightarrow x.\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)

Vậy khi x = 0 hoặc x = 3 thì M = 0

b) \(M< 0\Leftrightarrow x.\left(x-3\right)< 0\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x-3< 0\end{cases}}\) hoặc \(\hept{\begin{cases}x< 0\\x-3>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>0\\x< 3\end{cases}}\)          hoặc \(\hept{\begin{cases}x< 0\\x>3\end{cases}}\) (loại)

Vậy \(0< x< 3\) thì M < 0

28 tháng 8 2018

ta có M = x.(x-3)

            = \(x^2-3x\)

nếu M = 0 thì \(x^2-3x=0\)

                  = \(x\left(x-3\right)=0\)

                  = \(\orbr{\begin{cases}x=0\\x-3=0=>x=3\end{cases}}\)

nếu M < 0 thì \(x^2-3x< 0\)

                 =  \(x\left(x-3\right)< 0\)

                 = \(\orbr{\begin{cases}x< 0\\x-3< 0=>x< 3\end{cases}}\)

12 tháng 4 2023

a) \(x-3=2m+4\)

\(\Leftrightarrow x=2m+4+3\)

\(\Leftrightarrow x=2m+7\)

Phương trình có nghiệm dương khi \(2m+7>0\Leftrightarrow m>-\dfrac{7}{2}\)

b) \(2x-5=m+8\)

\(\Leftrightarrow2x=m+8+5\)

\(\Leftrightarrow2x=m+13\)

\(\Leftrightarrow x=\dfrac{m+13}{2}\)

Phương trình có nghiệm âm khi: \(\dfrac{m+13}{2}< 0\Leftrightarrow m< -13\)

c) \(x-2=3m+4\)

\(\Leftrightarrow x=3m+4+2\)

\(\Leftrightarrow x=3m+6\)

Phương trình có nghiệm lớn hơn 3 khi: \(3m+6>3\Leftrightarrow m>-1\)

c, 

\(\Delta'=\left(m+3\right)^2-\left(m^2+3\right)\\ =m^2+6m+9-m^2-3\\ =6m+6\) 

Phương trình có nghiệm kép

\(\Delta'=0\\ 6m+6=0\\ \Leftrightarrow m=-1\) 

Với m = -1

\(\Rightarrow x^2-4x+4=0\\ \Leftrightarrow x=2\)