1. Rút gọn :
a) \(\frac{8^6.25^5}{16^5.125^3}\) b) \(\frac{9^3.5-3^6.2}{9^4+3^8.5}\)
2. Phân số \(\frac{3n+2}{4n-5}\) có thể rút gọn cho số nào ?
3. CMR : \(\frac{3n-1}{2n-1}\) là phân số tối giản ( n \(\in\) Z )
Ai có thể giúp mìk zới !!! :">
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
n | 4 | 2 | 6 | 0 | 12 | -6 |
Ta có :
\(M=\frac{9^4.27^5.3^6.3^4}{3^8.81^4.23^4.8^2}\)
\(M=\frac{\left(3^2\right)^4.\left(3^3\right)^5.3^{10}}{3^8.\left(3^4\right)^4.23^4.8^2}\)
\(M=\frac{3^8.3^{15}.3^{10}}{3^8.3^{16}.23^4.8^2}\)
\(M=\frac{3^{33}}{3^{24}.23^4.8^2}\)
\(M=\frac{3^9}{23^4.8^2}\)
Bài 1
a) \(P=\frac{6n+5}{2n-4}=\frac{6n-12+7}{2n-4}=3+\frac{7}{2n-4}\)
Để P là phân số thì \(\hept{\begin{cases}2n-4\ne7\\2n-4\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}n\ne\frac{11}{2}\\n\ne\frac{5}{2}\end{cases}}\)
Vậy...
b) \(P=\frac{6n+5}{2n-4}=3+\frac{7}{2n-4}\)
Để \(P\in Z\)thì \(\orbr{\begin{cases}2n-4=7\\2n-4=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=\frac{11}{2}\notin Z\\n=\frac{5}{2}\notin Z\end{cases}}}\)
Vậy không có giá trị n nào thuộc Z để P thuộc Z.
c) \(\left|2n-3\right|=\frac{5}{3}\)
Trường hợp: \(2n-3=\frac{5}{3}\Rightarrow n=\frac{7}{3}\)
\(P=\frac{6.\frac{7}{3}+5}{2.\frac{7}{3}-4}=\frac{19}{\frac{2}{3}}=\frac{57}{2}\)
Trường hợp: \(2n-3=-\frac{5}{3}\Rightarrow n=\frac{2}{3}\)
\(P=\frac{6.\frac{2}{3}+5}{2.\frac{2}{3}-4}=\frac{9}{\frac{-8}{3}}=\frac{27}{-8}\)
Bài 2
\(N=\frac{4^6.9^5+6^9.120}{8^4.3^{12}-6^{11}}=\frac{\left(2^2\right)^6.\left(3^2\right)^5+\left(2.3\right)^{10}.4.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(=\frac{2^{12}.3^{10}+5.2^{12}.3^{10}}{2^{12}.3^{12}-6^{11}}=\frac{6.2^{12}.3^{10}}{6^{12}-6^{11}}\)
\(=\frac{2.3.2^{12}.3^{10}}{6.6^{11}-6^{11}}=\frac{2^{13}.3^{11}}{5.\left(2.3\right)^{11}}=\frac{2^{13}.3^{11}}{5.2^{11}.3^{11}}=\frac{4}{5}\)
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)
b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Tới đây lập bảng tìm n.