cho N=n1+n2+...+n10=2013 đặt S=n1^2+n2^2+...+n10^2 chứng minh s-1 chia hết cho 2
(1,2,....,10 đều là chỉ số)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi n1, n2 lần lượt là chiết suất của môi trường A và môi trường B đối với một ánh sáng đơn sắc. Chiết suất tỉ đối của môi trường A so với môi trường B là: n12=\(\dfrac{n1}{n2}\)
#include <bits/stdc++.h>
using namespace std;
long long a,b,i,dem;
int main()
{
cin>>a>>b;
dem=0;
for (i=a; i<=b; i++) if (i%2==0) dem++;
cout<<dem;
}
Var n1,n2,i,dem:integer;
Begin
Write('Nhap n1 = ');readln(n1);
Write('Nhap n2 = ');readln(n2);
For i:=n1 to n2 do
If i mod 2 = 0 then dem:=dem+1;
Write('Co ',dem,' so chan');
Readln;
End.
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
Có \(n^{10}\) + 1 chia hết cho 10 => \(n^{10}\) = \(n^{5.2}\) = (\(n^5\))\(^2\) có tận cũng bằng 9.
=> \(n^5\) tận cũng bằng 3 hoặc 7
=> n tận cũng bằng 3 hoặc 7
êm ms có lớp 6 thui ạ !
Câu hỏi của Dung Viet Nguyen - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.