tìm x
3x-6=24+x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
f ' x = x 3 x − 26 2 x − 10 f ' x = 0 có 3 nghiệm nhưng có một nghiệm kép. Do đó có hai điểm cực trị.
Chọn phương án C
Sửa đề bài 1 : k => x P/s : đề sai r :))
\(A=\left(3-2x\right)3x^2-8+\left(2x+5\right)\left(3x-2\right)-20x\)
\(=9x^2-6x^3-8+6x^2-4x+15x-10-20x=15x^2-6x^3-18-9x\)
Vậy biểu thức phụ thuộc biến x
\(B=\left(3-5x\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)
\(=6x+33-10x^2-55x-6x^2-14x-9x-21=-72x+12-16x^2\)
Vậy biểu thức phụ thuộc biến x
Bài 2 :
a, \(2x\left(x-1\right)-x^2+6=0\Leftrightarrow2x^2-2x-x^2+6=0\)
\(\Leftrightarrow x^2-2x+6=0\)( vô nghiệm )
b, \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)-x\left(x-2\right)\left(x+2\right)=15\)
\(\Leftrightarrow x^2-9-x\left(x^2-4\right)=15\Leftrightarrow x^2-9-x^3+12=15\)
\(\Leftrightarrow-x^3+x^2-12=0\Leftrightarrow x=2\)
\(3x+17=12\\ 3x=12-17\\ 3x=\left(-5\right)\\ x=\dfrac{-5}{3}\)
Lời giải:
a.
ƯCLN $ =5^2=25$
BCNN $=3.5^2.7=525$
b.
ƯCLN $=3$
BCLNN $=2^2.3^2.5.7.11=13860$
\(3x^2+10x-8=0\\ \Leftrightarrow3x^2+12x-2x-8=0\\ \Leftrightarrow3x\left(x+4\right)-2\left(x+4\right)=0\\ \Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{-4;\dfrac{2}{3}\right\}\)
\(x^3-3\left(m+1\right)x^2+2mx+m+2=0\left(1\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-3mx-2x-m-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2-x\left(3m+2\right)-m-2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-x\left(3m+2\right)-m-2=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)có\) \(3ngo\) \(phân\) \(biệt\Leftrightarrow\left(2\right)\) \(có\) \(2\) \(ngo\) \(phân\) \(biệt\ne1\)
\(\Leftrightarrow\left\{{}\begin{matrix}g\left(1\right)\ne0\\\Delta>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{-3}{4}\\\left(3m+2\right)^2-4\left(-m-2\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{-3}{4}\\9m^2+16m+12>0\left(luôn-đúng\right)\end{matrix}\right.\)
\(\Rightarrow m\ne\dfrac{-3}{4}\) \(thì\left(1\right)\) \(có\) \(3ngo\) \(phân\) \(biệt\)
\(do\left(2\right)\) \(\) \(có\) \(2\) \(ngo\) \(phân\) \(biệt\ne1\Rightarrow x3=1\)
\(\Rightarrow x1+x2=2\)
\(vi-ét\Rightarrow\left\{{}\begin{matrix}x1+x2=3m+2\\x1x2=-m-2\end{matrix}\right.\)
\(\Rightarrow3m+2=2\Leftrightarrow m=0\left(tm\right)\)
3x-6=24+x
<=>3x-x=24+6
<=>2x=30
<=>x=15
kết quả nhé