1)chứng tỏ tổng 3 số nguyên liên tiếp thì chia hết cho 3
2)chứng tỏ tổng 5 số nguyên liên tiếp thì chia hết cho 5
3) tìm n:
a,(4n-5) chia hết n
b,(-11) là B(n-1)
c,(2n-1) là Ư (3n +2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) gọi 3 số nguyên liên tiếp lần lượt là :a;a+1;a+2
ta có a+a+1+a+2=(a+a+a)+(1+2)=3a+3chia hết 3 =)tổng của 3 số nguyên liên tiếp chia hết cho 3
Bài 1:
=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)+101^2
=101^2-(1+2+3+...+99+100)
=101^2-100*101/2=5151
a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5
tk mình nha
A Gọi 3 số đó là: a; a+1; a +2
Ta có: a+a+1+a+2=3a+3
3 chia hết cho 3 suy ra 3a chi hết cho 3
Suy ra: 3a+3 chia hết cho 3
Suy ra: Tổng cuả3 số tự nhiên liên tiếp luôn chia hết cho 3
Tương tự câu b nha!
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
1/ Gọi 3 số nguyên liên tiếp đó là a; a + 1; a + 2
Trong 3 số nguyên liên tiếp có ít nhất 1 số chia hết cho 3, ta cho số đó là a
Ta có: a + a + 1 + a + 2 = a + a + a + 1 + 2 = 3a + 3
mà 3a và 3 chia hết cho 3
=> Tổng 3 số nguyên liên tiếp chia hết cho 3 (điều cần chứng minh)