cho ba số thực x,y,z thả mãn điều kiện: x+y+z=x^2-yz=18
Biết giá trị lớn nhất có thể của x được viết dưới dạng 2 \(\sqrt{a}\)-b tìm giá trị của a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{3x^2}{2}+y^2+z^2+yz=1\)
\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)
\(\Rightarrow-\sqrt{2}\le B\le\sqrt{2}\)
Vậy \(MinB=-\sqrt{2}\Leftrightarrow x=y=z=-\frac{\sqrt{2}}{3}\)
\(MaxB=\sqrt{2}\Leftrightarrow x=y=z=\frac{\sqrt{2}}{3}\)
Theo em bài này chỉ có min thôi nhé!
Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)
Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0
Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)
(chuyển vế qua dùng hằng đẳng thức là xong liền hà)
Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)
Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)
Vậy...
P/s: Ko chắc nha!
Ta có: \(x+y+z=18\)
\(\Leftrightarrow y=18-x-z\)
Thế vô \(x^2-yz=18\) ta được
\(x^2-18z+xz+z^2-18=0\)
\(\Leftrightarrow4x^2+4xz+4z^2-72z-72=0\)
\(\Leftrightarrow\left(4z^2+4xz+x^2\right)-36\left(2z+x\right)+324+\left(3x^2+36x+108\right)-72-324-108=0\)
\(\Leftrightarrow\left(2z+x-18\right)^2+3\left(x+6\right)^2-504=0\)
\(\Leftrightarrow3\left(x+6\right)^2=504-\left(2z+x-18\right)^2\le504\)
\(\Rightarrow\left(x+6\right)^2\le168\)
\(\Rightarrow-2\sqrt{42}-6\le x\le2\sqrt{42}-6\)
\(\Rightarrow\hept{\begin{cases}a=42\\b=6\end{cases}}\)
\(\Rightarrow a+b=42+6=48\)
Ta có: \(x+y+z=18\)
\(\Leftrightarrow y=18-x-z\)
Thế vô \(x^2-yz=18\) ta được
\(x^2-18z+xz+z^2-18=0\)
\(\Leftrightarrow z^2+\left(x-18\right)z-18+x^2=0\)
Để phương trình bậc 2 theo z mà có nghiệm thì:
\(\Delta=\left(x-18\right)^2-4\left(x^2-18\right)\ge0\)
\(\Rightarrow-3x^2-36x+396\ge0\)
\(\Rightarrow\left(x+6\right)^2\le168\)
\(\Rightarrow-2\sqrt{42}-6\le x\le2\sqrt{42}-6\)
\(\Rightarrow\hept{\begin{cases}a=42\\b=6\end{cases}}\)
\(\Rightarrow a+b=42+6=48\)