K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Ta có: \(x+y+z=18\)

\(\Leftrightarrow y=18-x-z\)

Thế vô \(x^2-yz=18\) ta được

\(x^2-18z+xz+z^2-18=0\)

\(\Leftrightarrow4x^2+4xz+4z^2-72z-72=0\)

\(\Leftrightarrow\left(4z^2+4xz+x^2\right)-36\left(2z+x\right)+324+\left(3x^2+36x+108\right)-72-324-108=0\)

\(\Leftrightarrow\left(2z+x-18\right)^2+3\left(x+6\right)^2-504=0\)

\(\Leftrightarrow3\left(x+6\right)^2=504-\left(2z+x-18\right)^2\le504\)

\(\Rightarrow\left(x+6\right)^2\le168\)

\(\Rightarrow-2\sqrt{42}-6\le x\le2\sqrt{42}-6\)

\(\Rightarrow\hept{\begin{cases}a=42\\b=6\end{cases}}\)

\(\Rightarrow a+b=42+6=48\)

11 tháng 2 2017

Ta có: \(x+y+z=18\)

\(\Leftrightarrow y=18-x-z\)

Thế vô \(x^2-yz=18\) ta được

\(x^2-18z+xz+z^2-18=0\)

\(\Leftrightarrow z^2+\left(x-18\right)z-18+x^2=0\)

Để phương trình bậc 2 theo z mà có nghiệm thì:

\(\Delta=\left(x-18\right)^2-4\left(x^2-18\right)\ge0\)

\(\Rightarrow-3x^2-36x+396\ge0\)

\(\Rightarrow\left(x+6\right)^2\le168\)

\(\Rightarrow-2\sqrt{42}-6\le x\le2\sqrt{42}-6\)

\(\Rightarrow\hept{\begin{cases}a=42\\b=6\end{cases}}\)

\(\Rightarrow a+b=42+6=48\)

Kết quả là 48 nha

19 tháng 6 2016

Ta có : \(\frac{3x^2}{2}+y^2+z^2+yz=1\)

\(\Leftrightarrow3x^2+2y^2+2z^2+2yz=2\)

\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)=2\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2=2\)

\(\Rightarrow-\sqrt{2}\le B\le\sqrt{2}\)

Vậy \(MinB=-\sqrt{2}\Leftrightarrow x=y=z=-\frac{\sqrt{2}}{3}\)

\(MaxB=\sqrt{2}\Leftrightarrow x=y=z=\frac{\sqrt{2}}{3}\)

29 tháng 9 2019

Theo em bài này chỉ có min thôi nhé!

Rất tự nhiên để khử căn thức thì ta đặt \(\left(\sqrt{x};\sqrt{y};\sqrt{z}\right)=\left(a;b;c\right)\ge0\)

Khi đó \(M=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\) với abc = \(\sqrt{xyz}=1\) và a,b,c > 0

Dễ thấy \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

(chuyển vế qua dùng hằng đẳng thức là xong liền hà)

Do đó \(2M=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)

Đến đây thì chứng minh \(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\left(a+b\right)\ge0\)(đúng)

Áp dụng vào ta thu được: \(2M\ge\frac{2}{3}\left(a+b+c\right)\Rightarrow M\ge\frac{1}{3}\left(a+b+c\right)\ge\sqrt[3]{abc}=1\)

Vậy...

P/s: Ko chắc nha!

30 tháng 9 2019

dit me may