Tập hợp các số nguyên x để biểu thức A=|x+2|+|1-x| đạt giá trị nhỏ nhất {.....................}
(Nhập kết quả theo giá trị tăng dần, ngăn cách bởi dấu;)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^0+2^1+2^2+...+2^{21}\)
\(2A=2^1+2^2+2^3+...+2^{22}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{22}\right)-\left(2^0+2^1+2^2+...+2^{21}\right)\)
\(A=2^{22}-1\)
\(2^{22}-1=2^{2n}-1\)
\(2^{2\times11}-1=2^{2n}-1\)
n = 11
\(A=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\)
Vậy GTNN của A là 3 khi \(\begin{cases}x+2\ge0\\1-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-2\\x\le1\end{cases}\)\(\Leftrightarrow-2\le x\le1\)
Mà x nguyên nên \(x\in\left\{-2;-1;0;1\right\}\)
Để \(A=\)lx+2l+l1-xl đạt \(GTNN\Leftrightarrow A=0\)
\(A=0\Leftrightarrow\hept{\begin{cases}x-2=0\\1-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=1\end{cases}}}\)
Vậy để \(A=\)lx+2l+l1-xl đạt \(GTNN\Leftrightarrow x=2;1\)