cho tam giac ABC vuông tại A có AB = AC.Qua A vẽ đường thẳng xy (B,C cùng phía đối với xy).Kẻ BD và CE vuông góc với xy ( D,E thuộc xy).Khi đó\(\frac{BD}{ED}+\frac{CE}{DE}=\)
Giups mk nha các bn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình giùm mình nhé!
a) Xét tam giác BAD và tam giác ACE có:
AB = AC (gt)
BDA = CEA =1V
DBA = EAC (vì cùng phụ với DAB)
Nên tam giác BAD = tam giác ACE (chgn)
b) Từ c/m a, có: tam giác BAD bằng tam giác ACE => AD=EC; AE=DB
=> DE = DA + AE= EC+BD (đpcm)
a) Xét tam giác BAD và tam giác ACE có : AB = AC (gt)
BDA = CEA = 90o
Góc DBA = Góc EAC (vì cùng phụ với DAB)
Vậy tam giác BAD = tam giác ACE (ch - gn)
Ta có: ΔAEC= ΔBDA
⇒AE = BD và EC = DA
Mà DE = DA + AE
Vậy: DE = CE + BD
a) Xét ∆BAD và ∆ACE có:
^BDA=^AEC (cùng bằng 90 độ)
AB=AC (gt)
^BAD=^ACE (cùng phụ với ^EAC)
suy ra ∆BAD=∆ACE (cạnh huyền-góc nhọn)
b) Do ∆BAD=∆ACE nên AD=CE và AE=BD
mà DE=DA+AE
suy ra DE = CE+BD (đpcm)
Bài 2)
a) Xét ∆AOD và ∆COB có:
^OAD=^OCB(so le trong)
AD=BC(gt)
^ADO=^CBO(so le trong)
suy ra ∆AOD=∆COB (g-c-g)
do đó OA=OC (hai cạnh tương tứng)
b)
Xét ∆AEO và ∆COF có:
^EAO=^OCF (so le trong)
OA=OC (c/m trên)
^AOE=^COF (đối đỉnh)
suy ra ∆AEO=∆COF (g-c-g)
do đó OE=OF (hai cạnh tương ứng)
a) Vì góc BAC = 90 độ(gt)
suy ra : Góc A1 + góc A2 = 90 độ (1)
Xét tam giác ACE , có :
góc A + góc C + góc E = 180 độ ( Áp dụng tổng 3 góc trong một tam giác )
hay góc A + góc C + 90 độ = 180 độ
suy ra : góc A + góc C =180 độ - 90 độ
suy ra : góc A + góc C = 90 độ (2)
Từ (1) và (2) , suy ra :
Góc A1 = góc C1 (ĐPCM)
b) Xét tam giác ABD và tam giác ACE . Có :
Góc A1 = Góc C1 (CMT)
AB = AC ( gt)
Góc ADB = Góc AEC ( vì cùng bằng 90 độ )
Suy ra : Tam giác ABD = Tam giác ACE ( cạnh huyền - góc nhọn ) (ĐPCM)
c) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E . Có :
AB=AC(gt)
suy ra : BD = CE (1)
Mà : BD vuông góc với xy tại D (gt)(2)
CE vuông góc với xy tại E (gt)(3)
Từ (1), (2) và (3) . Suy ra :
DE = BD+CE ( ĐPCM)
hình thì các bạn bên dưới hoặc bên trên đã vẽ đúng hết rồi nha