1+1+20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
100-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1--20-20-20-20-20+123456789=123456822
\(B=\dfrac{20^{19}+1}{20^{20}+1}< \dfrac{20^{19}+1+19}{20^{20}+1+19}=\dfrac{20^{19}+20}{20^{20}+20}\)
\(B< \dfrac{20.\left(20^{18}+1\right)}{20.\left(20^{19}+1\right)}\)
\(B< \dfrac{20^{18}+1}{20^{19}+1}\)
\(B< A\)
`A=(20^10+1)/(20^11+1)`
`=>20A=(20^11+20)/(20^11+1)=1+19/(20^11+1)`
Hoàn toàn tương tự: `20B=1+19/(20^12+1)`
Vì `19/(20^12+1)<19/(20^11+1)`
`=>20B<20A`
`=>B<A`
\(20M=\dfrac{20^{1976}+1+19}{20^{1976}+1}=1+\dfrac{19}{20^{1976}+1}\)
\(20N=\dfrac{20^{1977}+1+19}{20^{1977}+1}=1+\dfrac{19}{20^{1977}+1}\)
mà \(20^{1976}+1< 20^{1977}+1\)
nên M>N
\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
20^10-1>20^10-3
=>2/20^10-1<2/20^10-3
=>A<B
A=2010−1+22010−1=1+22010−1�=2010−1+22010−1=1+22010−1
B=2010−3+22010−3=1+22010−3�=2010−3+22010−3=1+22010−3
20^10-1>20^10-3
=>2/20^10-1<2/20^10-3
=>A<B
A=20^10+1/20^10-1
A=20^10-1+2/20^10-1
A=20^10-1/20^10-1+2/20^10-1
A=1+2/20^10-1
B=20^10-1/20^10-3
B=20^10-3+2/20^10-3
B=20^10-3/20^10-3+2/20^10-3
B=1+2/20^10-3
Vì 20^10-1>20^10-3 nên 2/20^10-1<2/20^10-3
=>A<B
Ta có: \(20^{10}-1>20^{10}-3\)
\(\Rightarrow\frac{20^{10}-1}{20^{10}-3}>1\)
\(\Rightarrow\frac{20^{10}-1}{20^{10}-3}>\frac{20^{10}-1+2}{20^{10}-3+2}=\frac{20^{10}+1}{20^{10}-1}=B\)
Vậy \(A>B\)
8:
\(A=\dfrac{20^{10}-1+2}{20^{10}-1}=1+\dfrac{2}{20^{10}-1}\)
\(B=\dfrac{20^{10}-3+2}{20^{10}-3}=1+\dfrac{2}{20^{10}-3}\)
mà 20^10-1>20^10-3
nên A<B
1+1+20=22
tk nha
1+1+20=22