Tìm x, y thuộc Z: 1 + x + y + 2xy^2 = xy + x^2 + 2y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Bài 1: Ta có 5x+7=5(x-2)+8
Để 5x+7 chia hết cho x-2 thì 5(x-2) +8 chia hết cho x-2
=> 8 chia hết cho x-2
x nguyên => x-2 nguyên => x-2 thuộc Ư (8)={-8;-4;-2;-1;1;2;4;8}
ta có bảng
x-2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
x | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 10 |
Bài 2:
a) xy+x=-15
<=> x(y+1)=-15
=> x, y+1 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
x | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
y+1 | 1 | 3 | 5 | 15 | -15 | -5 | -3 | -1 |
y | 0 | 2 | 4 | 14 | -16 | -6 | -4 | -2 |
b) xy+2-y=9
<=> y(x-1)=7
=> y, x-1 thuộc Ư (7)={-7;-1;1;7}
Ta có bảng
y | -7 | -1 | 1 | 7 |
x-1 | -1 | -7 | 7 | 1 |
x | 0 | -6 | 6 | 2 |
c) xy+2x+2y=-17
<=> x(y+2)+2(y+2)=-15
<=> (x+2)(y+2)=-15
<=> x+2; y+2 thuộc Ư (-15)={-15;-5;-3;-1;1;3;5;15}
Ta có bảng
x+2 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
x | -17 | -7 | -5 | -3 | -1 | 1 | 3 | 13 |
y+2 | 1 | 3 | 5 | 15 | -15 | -5 | -3 | -1 |
y | -1 | 1 | 3 | 13 | -17 | -7 | -5 | -3 |
\(1+x+y+2xy^2=xy+x^2+2y^2\)
\(\Leftrightarrow\left(x^2-x\right)+\left(2y^2-2xy^2\right)+\left(xy-y\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(x-2y^2+y\right)=1\)
\(\Rightarrow\left(x-1,x-2y^2+y\right)=\left(1,1;-1,-1\right)\)
Tới đây thì đơn giản rồi nhé
Xét \(\hept{\begin{cases}x-1=1\\x-2y^2+y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\2y^2-y=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Cái còn lại làm tương tự
a) Ta có: \(VT=\left(x-y-z\right)^2\)
\(=\left(x-y-z\right)\left(x-y-z\right)\)
\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)
\(=x^2+y^2+z^2-2xy+2yz-2xz\)
=VP(đpcm)
b) Ta có: \(VT=\left(x+y-z\right)^2\)
\(=\left(x+y-z\right)\left(x+y-z\right)\)
\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)
\(=x^2+y^2+z^2+2xy-2yz-2zx\)
=VP(đpcm)
c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)
Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
=VP(đpcm)
d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5\)
=VP(đpcm)
a, b, nhân vào là ra à
c, nghe cứ là lạ
d, cũng nhân là ra hà
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)