cho tam giác abc có am là pg/của am cắt bc tại m.cm tam giác abc cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) bn cần chứng minh tam giác ADB = tam giác ADC (c.c.c)
=> góc DAB = góc DAC
=> AD là phân giác của góc BAC
b) tam giác ABC cân tại A, mà góc A = 200 (gt) => góc ABC = (1800 - 200) : 2 = 800
tam giác ABC đều nên góc DBC = 600
tia BD nằm giữa 2 tia BA và BC => góc ABD = 800 - 600 = 200
tia BM là phân giác của góc ABD => góc ABM = 100
xét tam giác ABM và tam giác BAD có:
AB chung
góc BAM = góc ABD = 200
góc ABM = góc DAB = 100
=> tam giác ABM = tam giác BAD (g.c.g)
=> AM = BC (cạnh tương ứng)
t i c k nhé!! 564765478
Ta có: ΔABC cân tại A
mà AM là đường phân giác
nên M là trung điểm của BC và AM là đường cao
Xét ΔEBC có
M là trung điểm của BC
MA//EC
Do đó: A là trung điểm của EB
Xét ΔEBC có
M là trung điểm của BC
A là trung điểm của EB
Do đó: MA là đường trung bình
=>MA//EC
hay EC⊥BC
=>ΔECB vuông tại C
mà CA là đường trung tuyến
nên CA=AE
hay ΔACE cân tại A
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
nhấn vào đây: Bộ đề thi học sinh giỏi toán 8: Bộ đề thi học sinh giỏi toán 8
t i c k nhé!! 5676575677689879905673565363776575675687687647656756876
a) Xét \(\Delta\) DHM và \(\Delta\) DMC:
\(\widehat{MDH}chung.\)
\(\widehat{DHM}=\widehat{DMC}\left(=90^o\right).\)
\(\Rightarrow\) \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(g-g\right).\)
b) Xét \(\Delta\) ABC cân tại A: AM là đường cao (gt).
\(\Rightarrow\) AM là trung tuyến (Tính chất tam giác cân).
\(\Rightarrow\) M là trung điểm của BC.
Ta có: \(\Delta\) DHM \(\sim\) \(\Delta\) DMC \(\left(cmt\right).\)
\(\Rightarrow\dfrac{DH}{DM}=\dfrac{HM}{MC}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow DH.MC=DM.HM.\)
Mà \(MC=BM\) (M là trung điểm của BC); \(DM=AD\) (D là trung điểm của AM).
\(\Rightarrow DH.BM=AD.HM.\)
c) Ta có: \(\widehat{HDM}+\widehat{DMH}=90^o\) (Tam giác DHM vuông tại H).
\(\widehat{HMC}+\widehat{DMH}=90^o\left(=\widehat{DMC}\right).\)
\(\Rightarrow\) \(\widehat{HDM}=\widehat{HMC}.\)
Mà \(\widehat{ADH}+\widehat{HDM}=180^o;\widehat{BMH}+\widehat{HMC}=180^o.\\ \Rightarrow\widehat{ADH}=\widehat{BMH}.\)
Xét \(\Delta\) ADH và \(\Delta\) BMH:
\(\widehat{ADH}=\widehat{BMH}\left(cmt\right).\\ \dfrac{AD}{BM}=\dfrac{DH}{MH}\left(DH.BM=AD.HM\right).\)
\(\Rightarrow\Delta\) ADH \(\sim\Delta\) BMH \(\left(g-g\right).\)
\(\Rightarrow\widehat{DAH}=\widehat{MBH}\) (2 góc tương ứng).
Xét \(\Delta\) AMN và \(\Delta\) BHN:
\(\widehat{N}chung.\)
\(\widehat{MAN}=\widehat{HBN}\left(\widehat{DAH}=\widehat{MBH}\right).\)
\(\Rightarrow\Delta\) AMN \(\sim\) \(\Delta\) BHN \(\left(g-g\right).\)
\(\Rightarrow\widehat{AMN}=\widehat{BHN}=90^o\) (2 góc tương ứng).
Xét \(\Delta\) ABN:
AM là đường cao \(\left(AM\perp BC\right).\)
BH là đường cao \(\left(\widehat{BHN}=90^o\right).\)
AM cắt BH tại E (gt).
\(\Rightarrow\) E là trực tâm.
\(\Rightarrow\) EN là đường cao.
\(\Rightarrow EN\perp AB.\)
Xét tam giác AMB CÓ BM=MC
MA CHUNG
M CHUNG
=> TAM GIÁC AMB=TAM GIÁC AMC
=>AB=AC=>TAM GIÁC ABC CAÀN TẠI A