Dựng hình thoi ABCD biết góc A = 30 độ và tổng hai đường chéo bằng 5 cm. (phân tích, nêu cách dựng và dựng hình.)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
Xét dãy số \(u_n=S_{A_nB_nC_nD_n}\). Ta có \(u_1=a^2\)
Ta xét hình vuông có cạnh \(x\) (diện tích là \(x^2\)). Khi đó nửa độ dài đường chéo của hình vuông này sẽ là \(\dfrac{x}{\sqrt{2}}\). Khi đó diện tích của hình vuông mới là \(\left(\dfrac{x}{\sqrt{2}}\right)^2=\dfrac{x^2}{2}\) bằng 1 nửa diện tích hình vuông ban đầu. Như vậy, ta có mối quan hệ truy hồi: \(u_{n+1}=2u_n\). Dễ thấy đây là một cấp số nhân.
Ta có \(\left(u_n\right):\left\{{}\begin{matrix}u_1=a^2\\u_{n+1}=2u_n\end{matrix}\right.\)
\(\Rightarrow S_n=\sum\limits^{\infty}_{i=1}u_i=a^2\left(\sum\limits^{\infty}_{i=0}\dfrac{1}{2^i}\right)=2a^2\)
(Đẳng thức quen thuộc \(\sum\limits^{\infty}_{i=0}\dfrac{1}{2^i}=2\))
Cho \(S_n=8\) \(\Rightarrow2a^2=8\Leftrightarrow a=2\).
Vậy \(a=2\) thỏa mãn ycbt.
*Cách dựng:
- Dựng ∆ ABD biết AB = AD = 2(cm), BD = 3(cm).
- Trên nửa mặt phẳng bờ BD không chứa điểm A. Từ B dựng tia Bx // AD, từ D dựng tia DY // AB, chúng cắt nhau tại C.
Ta có hình thoi ABCD cần dựng
*Chứng minh:
Vì AB // CD và AD // BC nên tứ giác ABCD là hình bình hành
AB = AD = 2cm. Vậy tứ giác ABCD là hình thoi.
Lại có: BD = 3cm
Hình thoi dựng được thỏa mãn điều kiện bài toán.
* Cách dựng:
- Dựng ∆ OAB biết OA = OB = 2cm, ∠ (AOB ) = 100 0
- Trên tia đối tia OA dựng điểm C sao cho OC = OA = 2cm
- Trên tia đối tia OB dựng điểm D sao cho OD = OB = 2cm
Nối AD, BC, CD ta có hình chữ nhật ABCD cần dựng
* Chứng minh:
Ta có: OA = OC, OB = OD
Suy ra tứ giác ABCD là hình bình hành.
Vì AC = BD = 4 (cm) nên hình bình hành ABCD là hình chữ nhật.
Dựng tam giác ABD, biết ba cạnh : BD = 3cm, AB = AD = 2cm. Sau đó dựng điểm C.