cho tam giác ABC,gọi D là trung điểm của BC. chứng minh rằng: AD < \(\frac{AB+AC}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
Trên tia đối của tia AD lấy điểm E sao cho D là trung điểm của AE
Xét t/g ABD và t/g ECD có:
BD = CD (gt)
góc ADB = góc EDC (đối đỉnh)
AD = DE (cách vẽ)
=> t/g ABD = t/g ECD (c.g.c)
=> AB = EC (2 cạnh t/ứ)
Xét t/g ACE có: AE < AC + CE
Mà AB = CE (cmt)
=> AE < AB + AC
Mà AE = 2AD (cách vẽ)
=> 2AD < AB + AC
=> \(AD< \frac{AB+AC}{2}\) (đpcm)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a) Xét ΔAND và ΔCNB có
NA=NC(N là trung điểm của AC)
\(\widehat{AND}=\widehat{CNB}\)(hai góc đối đỉnh)
ND=NB(N là trung điểm của BD)
Do đó: ΔAND=ΔCNB(c-g-c)
b) Ta có: ΔAND=ΔCNB(cmt)
nên AD=BC(hai cạnh tương ứng)
Ta có: ΔAND=ΔCNB(cmt)
nên \(\widehat{ADN}=\widehat{CBN}\)(hai góc tương ứng)
mà \(\widehat{ADN}\) và \(\widehat{CBN}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
1: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
DO đó: ΔABD=ΔECD
2: Xét tứ giác ABEC có
D là trung điểm của AE
D là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: EC//AB
hay EC⊥AC
4:Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=1/2BC
1: Xét ΔABD và ΔECD có
DA=DE
\(\widehat{ADB}=\widehat{EDC}\)
DB=DC
DO đó: ΔABD=ΔECD
2: Xét tứ giác ABEC có
D là trung điểm của AE
D là trung điểm của BC
Do đó: ABEC là hình bình hành
Suy ra: EC//AB
hay EC⊥AC
4:Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=1/2BC