cho các số thực dương a b c . chứng minh rằng
P=1/(a+b)+1/(b+c)+1/(c+a)>=4/(2a^2+b^2+c^2+4) + 4/(a^2+2b^2+c^2+4) + 4/(a^2+b^2+2c^2+4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(GT\Rightarrow\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)
Ta có: \(\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{a^4}+\frac{1}{b^4}\ge4\sqrt[4]{\frac{1}{a^{12}b^4}}=\frac{4}{a^3b}\)
Tương tự: \(\frac{3}{b^4}+\frac{1}{c^4}\ge\frac{4}{b^3c}\) ; \(\frac{3}{c^4}+\frac{1}{a^4}\ge\frac{4}{c^3a}\)
\(\Rightarrow\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}\le\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}=3\)
\(VT=\frac{1}{a^3b+c^2+c^2+1}+\frac{1}{b^3c+a^2+a^2+1}+\frac{1}{c^3a+b^2+b^2+1}\)
\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{2}{c^2}+1+\frac{1}{b^3c}+\frac{2}{a^2}+1+\frac{1}{c^3a}+\frac{2}{b^2}+1\right)\)
\(VT\le\frac{1}{16}\left(\frac{1}{a^3b}+\frac{1}{b^3c}+\frac{1}{c^3a}+2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+3\right)\)
\(VT\le\frac{1}{16}\left(6+2\sqrt{3\left(\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{c^4}\right)}\right)=\frac{1}{16}\left(6+6\right)=\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)
\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\) (1)
áp dụng (x2 +y2 +z2)(m2+n2+p2) \(\ge\left(xm+yn+zp\right)^2\)
(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\) <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\) ( vậy (1) đúng)
dấu '=' khi a=b=c
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
Tính ra a+b+c<=4 nhé (dùng Bu-nhi-a cop-xki)
Phần còn lại tự xử nhé)
\(P=\dfrac{4a^2}{4b+2c}+\dfrac{4b^2}{4a+2c}+\dfrac{c^2}{4a+4b}\ge\dfrac{\left(2a+2b+c\right)^2}{8a+8b+4c}\)
\(=\dfrac{\left(2a+2b+c\right)^2}{4\left(2a+2b+c\right)}=\dfrac{1}{4}\left(2a+2b+c\right)\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z