cho tam giác ABC có 3 góc nhọn. trong nửa mặt phẳng bờ BC không chứa A, kẻ các tia Bt song song Cz. trên tia Bt lấy diểm D, trên tia Cz lấy điểm E sao cho BD = CE. qua D kẻ Dm song song AB, qua E kẻ En song song AC. các đường thẳng Dm và En cắt nhau ở G. chứng minh rằng :
a. tam giác ABC = tam giác GDE
b. AG song song CE
a, kẻ DC
xét tam giác BDC và tam giác ECD có : DC chung
BD = CE (Gt)
^BDC = ^CDE (slt; BD // CE)
=> tam giác BDC = tam giác ECD (c-g-c)
=> BC = DE (1)
và ^BCD = ^CDE (đn) mà 2 góc này slt
=> DE // BC
gọi En cắt BC tại P => ^DEP = ^BPG (đồng vị)
có ^BPG = ^ACB (đồng vị) do En // AC (Gt)
=> ^DEG = ^BCA (2)
gọi Dm cắt BC tại Q; DE // BC (cmt)
=> ^EDG = ^CQG (đồng vị)
^GQP = ^ABC (đồng vị) Dm // AB (Gt)
=> ^EDG = ^ABC (3)
(1)(2)(3) => tam giác ABC = tam giác GDE (c-g-c)
b, kẻ AE
tam giác ABC = tam giác GDE (Câu a) => GE = AC (đn)
xét tam giác AGE và tam giác ECA có : AE chung
^GEA = ^EAC (slt) GE // AC (gT)
=> tam giác AGE = tam giác ECA (c-g-c)
=> ^GAE = ^AEC mà 2 góc này slt
=> AG // CE (đl)