S=2/3+4/9 +8/27+16/81 = ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B={x\(\in\)N|x=3k; 1<=k<=4}
C={x\(\in\)N|x=4*a2; 1<=a<=5}
D={x\(\in\)N|x=9*a2;1<=a<=4}
E={x\(\in\)N|x=4k; 0<=x<=4}
G={x\(\in\)N|x=(-3)^k; 1<=k<=4}
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
a: A=2^0+2^1+...+2^9
2A=2+2^2+...+2^10
=>A=2^10-1
b: B=1+3+3^2+...+3^6
=>3B=3+3^2+...+3^7
=>2B=3^7-1
=>\(B=\dfrac{3^7-1}{2}\)
a) \(A=\left\{x\in N|0\le x\le4\right\}\)
b) \(B=\left\{x\in N|x=4k;0\le k\le4;k\in N\right\}\)
c) \(C=\left\{x\in Z|x=\left(-3\right)^k;1\le k\le4;k\in N\right\}\)
d) \(D=\left\{x\in N|x=k^2;k=3a;1\le a\le4;a\in N\right\}\)
\(a;\left(9^3\right)^3.\left(27^4\right)^5:81^5.3\)
\(=9^9.3.\left(\frac{27^4}{81}\right)^5=3^{18}.\left(\frac{3^{12}}{3^4}\right)^5=3^{18}.\left(3^8\right)^5=3^{18}.3^{40}=3^{58}\)
\(b;2^{11^2}:16^5.\left(4^3.8^2\right)^5=2^{22}:2^{20}.\left(2^6.2^6\right)^5\)
\(=2^2.\left(2^{12}\right)^5=2^2.2^{60}=2^{62}\)
Mẫu số chung là : 81.
\(S=\frac{2}{3}+\frac{4}{9}+\frac{8}{27}+\frac{16}{81}\)
\(S=\frac{2\times27}{3\times27}+\frac{4\times9}{9\times9}+\frac{8\times3}{27\times3}+\frac{16}{81}\)
\(S=\frac{54}{81}+\frac{36}{81}+\frac{24}{81}+\frac{16}{81}\)
\(S=\left(\frac{54}{81}+\frac{16}{81}\right)+\left(\frac{36}{81}+\frac{24}{81}\right)\)
\(S=\frac{70}{81}+\frac{60}{81}\)
\(S=\frac{130}{81}\)
130/81