Cho ΔABC vuông tại B. Trên cạnh BC lấy điểm E. Đường tròn đường kính EC cắt cạnh AC tại M và cắt AE tại N
a.CMR : A,B,E,M nằm cùng trên một đường tròn.A,B,N,C nằm trên một đường tròn
b.CM ME là tian phân giác góc BMN
c.CM AE.AN + CE.CB = AC.AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc CME=1/2*180=90 độ
=>EM vuông góc AC
góc EBA+góc EMA=180 độ
=>EBAM nội tiếp
góc ANC=1/2*180=90 độ
góc ANC=góc ABC=90 độ
=>ABNC nội tiếp
b; góc BME=góc EAB
góc NME=góc NCE
mà góc NCE=góc EAB
nên góc BME=góc NME
=>ME là phân giác của góc BMN
a: Xét (T) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE\(\perp\)BM tại E
Xét tứ giác MOAE có \(\widehat{MOA}+\widehat{MEA}=90^0+90^0=180^0\)
nên MOAE là tứ giác nội tiếp
=>M,O,A,E cùng thuộc một đường tròn