Cho tam giác cân ABC có góc A = 45o , AB=AC .Từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt BC ở M . Trên tia đối tia AM lấy điểm N sao cho AN=BM
CMR :a) góc AMC = góc BAC
b) tam giác ABM = CAN
c) tam giác MNC vuông cân tại C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a) Ta có: AB=2AC(gt)
mà AB=2AE(E là trung điểm của AB)
nên AC=AE
Xét ΔBAC vuông tại A và ΔDAE vuông tại A có
BA=DA(gt)
AC=AE(gt)
Do đó: ΔBAC=ΔDAE(hai cạnh góc vuông)
Suy ra: BC=DE(hai cạnh tương ứng)
Bài 5:
a) Ta có: ΔABC vuông cân tại A(gt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
⇒AM⊥BC(đpcm)
Trả lời:
Tam giác AIM = tam giác CIM ( ch-chg)
nên MA=MC. tam giác AMC cân tại đỉnh M. Tam giác MAC và tam giác ABC là tam giác cân lại có chung gióc C nên góc ở đỉnh của chúng bằng nhau
Vậy góc AMC = góc BAC.
Ta có : ABMˆ+ABCˆ=180ABM^+ABC^=180 và CANˆ+CAMˆ=180CAN^+CAM^=180 ( vì cùng kề bù)
do đó: góc ABM = góc CAM.
Vậy tam giác ABM= tam giác CAN (c.g.c)
=> CN=AM mà AM=CM nên suy ra CM=CN. Tam giác MCN cân tại C
Tam giác ABC cân tại A có góc BAC =45
=> ACBˆ=180−452=67o30′ACB^=180−452=67o30′
Mà ACBˆ=MACˆACB^=MAC^ nên MABˆ=67o30′
Khi đó MABˆ=MACˆ−BACˆ=67o30′−450=22o30′MAB^=MAC^−BAC^=67o30′−450=22o30′
⇒ACNˆ=22030′⇒ACN^=22o30′
MCNˆ=MCAˆ+ACMˆ=67030′+22o30′=90oMCN^=MCA^+ACM^=67o30′+22o30′=90o
\(\Rightarrow\)Tam giác CMN vuông cân ở C
~Học tốt!~
Phần a rất dễ nhé: tg AIM= tg CIM (c.g.c) =>AM=Mc=>tg AMC cân tại M => AM=MC=> góc C= góc MAC
Ta lại có góc BAC=180-2 góc C
AMC=180-2 góc MAC
DO dó =>DPCM