K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2022

Ta có \(F=\left(n-4\right)\left(n+2\right)\left(n+6\right)\)

Với \(n=4;n=-2;n=-6\) thì hiển nhiên F chia hết cho 125. Nhưng do n là số nguyên dương nên ta chỉ chọn \(n=4\)

Nếu F khác 0:

Do F chia hết cho 125 nên F cũng chia hết cho 5. Do 5 là số nguyên tố nên 1 trong 3 số \(n-4,n+2,n+6\) sẽ phải chia hết cho 5.

Nếu số đó là \(n-4\) thì đương nhiên \(n+6=n-4+10⋮5\) và \(n+2=n-4+6⋮̸5\). Vậy F không chia hết cho 125.

Nếu số đó là \(n+6\) thì \(n-4=n+6-10⋮5\) và \(n+2=n+6-4⋮̸5\). Vậy F không chia hết cho 125.

Nếu số đó là \(n+2\) thì \(n-4=n+2-6⋮̸5\) và \(n-4=n+2-6⋮̸5\). Vậy F cũng không chia hết cho 125.

Như vậy số nguyên dương n nhỏ nhất thỏa mãn F chia hết cho 125 là \(n=4\)

17 tháng 7 2017

F=(n+6)(n+2)(n-4)

n bé nhất => n =4

26 tháng 11 2020

Bạn xem hướng dẫn ở đây nhé

Câu hỏi của Bùi Thị Hoài - Toán lớp 9 - Học toán với OnlineMath

26 tháng 11 2020

Bạn xem lời giải ở đây

Câu hỏi của Bùi Thị Hoài - Toán lớp 9 - Học toán với OnlineMath

DD
26 tháng 11 2020

b) Ta tính tổng các chữ số của số khi được tạo thành. 

Xét các số có 1 chữ số thì tổng bằng \(45\)

Xét các số có 2 chữ số: tổng các chữ số hàng chục là \(10.1+...+10.9=10.45\)

                                      tổng các chữ số hàng đơn vị là \(\left(0+1+2+...+9\right).9=9.45\)

Xét số có 3 chữ số thì tổng các chữ số là \(1+0+0=1\)

Do đó tổng các chữ số của số được tạo thành là \(45+10.45+9.45+1⋮̸9\)

Mà \(2016⋮9\)nên số tạo thành không chia hết cho \(2016\).

26 tháng 11 2020

a) Xem hướng dẫn ở đây:

Câu hỏi của Bùi Thị Hoài - Toán lớp 9 - Học toán với OnlineMath

DD
26 tháng 11 2020

\(P=n^3+4n^2-20n-48=\left(n+2\right)\left(n-4\right)\left(n+6\right)\)

Với \(n=4\Rightarrow P=0⋮125\)(thỏa)

Với \(n< 4\)thử từng giá trị đều không thỏa. 

Vậy số \(n\)nhỏ nhất cần tìm là \(4\).

26 tháng 11 2020

    \(n^3+4n^2-20n-48\)

\(=n^3-4n^2+8n^2-32n+12n-48\)

\(=\left(n^3-4n^2\right)+\left(8n^2-32n\right)+\left(12n-48\right)\)

\(=n^2\left(n-4\right)+8n\left(n-4\right)+12\left(n-4\right)\)

\(=\left(n-4\right)\left(n^2+8n+12\right)\)

Nhận thấy n = 4 thì biểu thức trên bằng 0, chia hết cho 125.

Vậy số tự nhiên n nhỏ nhất là bằng 4 (thử với n = 1, 2, 3 đều không chia hết cho 125)

26 tháng 11 2020

Bạn xem trả lời ở đây nhé

Câu hỏi của Bùi Thị Hoài - Toán lớp 9 - Học toán với OnlineMath

3 tháng 6 2017

11 tháng 9 2017

Chọn C.

Ta có:

Mà: 

11 tháng 11 2018

AH
Akai Haruma
Giáo viên
12 tháng 7 2021

Lời giải:
$125=5^3$

$A=n^3+7n^2+6n=n(n^2+7n+6)=n(n+1)(n+6)$

Nếu $n=5k$ với $k$ nguyên thì $n+1,n+6$ đều không chia hết cho $5$.

Do đó để $A\vdots $ thì $n\vdots 125$

Nếu $n=5k+1$ thì $n,n+1,n+6$ đều không chia hết cho $5$ nên $A\not\vdots 5$

Nếu $n=5k+2, 5k+3$ thì tương tự $n=5k+1$, loại

Nếu $n=5k+4$ thì $A=(5k+4)(5k+5)(5k+10)=25(5k+4)(k+1)(k+2)$

Để $A\vdots 125$ thì $(k+1)(k+2)\vdots 5$. Khi đó, $k+1\vdots 5$ hoặc $k+2\vdots 5$, hay $k$ có dạng $5t-1$ hoặc $5t-2$ với $t$ nguyên

$\Rightarrow n=5k+4=5(5t-1)+4=25t-1$ hoặc $n=5(5t-2)+4=25t-6$ với $t$ nguyên

Vậy $n$ có dạng $125t, 25t-1, 25t-6$ với $t$ là số nguyên nào đó.

20 tháng 8 2016

F=(n+6)(n+2)(n−4) 
n=5k+1 thì không thỏa mãn 
n=5k+2 thì không thỏa mãn 
n=5k+3 thì muốn 125|F thì k+1⋮25 rồi xét .... 
Tương tự với 5k+4,5k

20 tháng 8 2016

thank you nha