K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

a) Ta có: \(AB^2+AC^2=6^2+8^2=36+64=100\)

\(BC^2=10^2=100\)

=> \(AB^2+AC^2=BC^2\)

=> Tg ABC vuông tại A(định lí Pytago đảo)

b) _D đối xứng với H qua AB(gt)=>DH vuông góc AB hay MH vuông góc AB. Mà AB vuông góc AC =>AC //MH hay AN // MH(1)

_Cm tương tự: AM //HN(2)

_(1),(2)=> Tứ giác AMHN là hình bình hành

Mà ^MAN=90° => AMHN là hcn

=> AH=MN (đpcm)

c) _Nối D với E, A với E

_Tg AHN =tg AEN(c.g.c) => AE=AH(3)

Mà AH=MN(cmt) => MN=AE(4)

(3),(4)=> AMNE là hbh => AE // MN(*); AE=MN(5)

_ Xét tg DEH ta có: M là trung điểm DH; N là trung điểm EH (tích chất đối xứng)

=> MN là đường trung bình của tg DEH

=> MN // DE(**); MN= DE/2(6)

_(*),(**)=> D, A, E thẳng hàng(7)

_(5),(6)=> AE= DE/2 kết hợp với (7)=> A là trung điểm DE 

=> D đối xứng với E qua A 

29 tháng 11 2023

a) Để chứng minh tam giác ABC vuông, ta cần chứng minh rằng tổng bình phương hai cạnh góc nhọn bằng bình phương cạnh huyền.

 

Áp dụng định lý Pythagoras, ta có:

AB^2 + AC^2 = 6^2 + 8^2 = 36 + 64 = 100

BC^2 = 10^2 = 100

 

Vậy AB^2 + AC^2 = BC^2, từ đó ta có thể kết luận rằng tam giác ABC là tam giác vuông tại góc A.

 

b) Ta có:

- H là chân đường cao từ A xuống BC, nên AH là đường cao của tam giác ABC.

- D là điểm đối xứng với H qua AB, nên AD = AH.

- M là giao điểm của AB và HD, nên AM là trung tuyến của tam giác AHD, do đó AM = MD.

- E là điểm đối xứng với H qua AC, nên AE = AH.

- N là giao điểm của AC và HE, nên AN là trung tuyến của tam giác AHE, do đó AN = NE.

 

Từ đó, ta có AH = AD = AE và AM = MD, AN = NE.

 

Vậy ta có thể kết luận rằng AH = MN.

 

c) Để chứng minh D đối xứng với E qua A, ta cần chứng minh rằng AD = AE và góc DAE = 180 độ.

 

Ta đã chứng minh trong phần b) rằng AD = AE.

 

Để chứng minh góc DAE = 180 độ, ta cần chứng minh rằng góc DAB + góc BAE = 180 độ.

 

Vì tam giác ABC là tam giác vuông tại A (chứng minh trong phần a)), nên góc DAB + góc BAE = 90 độ + 90 độ = 180 độ.

 

Từ đó, ta có thể kết luận rằng D đối xứng với E qua A.

 

Đồng thời, F là trung điểm BC, nên AF song song với HD (do D là điểm đối xứng với H qua AB) và AF song song với HE (do E là điểm đối xứng với H qua AC).

 

Vậy ta có thể kết luận rằng AF vuông góc với MN.

30 tháng 12 2021

a: Xét tứ giác AHBD có 

M là trung điểm của AB

M là trung điểm của HD

Do đó: AHBD là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBD là hình chữ nhật

2 tháng 12 2017
a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH => AH=AD (1) Vì E đối xứng với H qua AC nên AC là đường trung trực của HE => AH=AE (2) Từ (1) và (2) suy ra AD=AE (3) Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o do đó góc DAB+góc BAH+góc HAC+góc CAE=180o => D, A, E thẳng hàng (4) từ (3) và (4) suy ra D và E đx với nhau qua A. b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE => tam giác DHE vuông tại H. c) Tam giác ADB=tam giác AHB (c-c-c) suy ra góc ADB=góc AHB=90o tương tự ta có : góc AEC=90o suy ra BD//CE (cùng vuông góc với DE) nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE => BAEC là hình thang vuông. Đúng 11 Sai 0 Vũ Khánh Linh 12/12/2015 lúc 00:12 Báo cáo sai phạm a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH => AH=AD (1) Vì E đối xứng với H qua AC nên AC là đường trung trực của HE => AH=AE (2) Từ (1) và (2) suy ra AD=AE (3) Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o => D, A, E thẳng hàng (4) Từ (3) và (4) suy ra D và E đx với nhau qua A. b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE => tam giác DHE vuông tại H. c) Tam giác ADB=tam giác AHB (c-c-c) suy ra góc ADB=góc AHB=90o tương tự ta có góc AEC=90o => BD//CE (cùng vuông góc với DE) nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE => BDEC là hình thang vuông. Đúng 1 Sai 0 Đậu Minh Thắng 09/08/2017 lúc 08:34 Báo cáo sai phạm V éo có hình Đúng 0 Sai 0 Vũ Quang Huy 05/08/2016 lúc 11:15 Báo cáo sai phạm cảm ơn bạn Vũ Khánh Linh nhé Đúng 0 Sai 0 Phan Trung Hiếu 03/08/2016 lúc 10:15 Báo cáo sai phạm có thể vẽ hình ko ak? Đúng 0 Sai 0 Thiên Hoàng Minh Trị 28/07/2016 lúc 09:57 o sai phạm có thể vẽ hình ra được không ak?? Đúng 0 Sai 0
11 tháng 12 2020

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được: 

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được: 

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot12=8\cdot4\sqrt{5}=32\sqrt{5}\)

\(\Leftrightarrow AH=\dfrac{32\sqrt{5}}{12}=\dfrac{8\sqrt{5}}{3}cm\)

Vậy: \(AB=4\sqrt{5}cm\)\(AH=\dfrac{8\sqrt{5}}{3}cm\)

c)

Ta có: D và C đối xứng nhau qua A(gt)

nên A là trung điểm của DC

Xét ΔBDC có 

BA là đường cao ứng với cạnh DC(BA⊥DC)

BA là đường trung tuyến ứng với cạnh DC(A là trung điểm của DC) 

Do đó: ΔBDC cân tại B(Định lí tam giác cân)

\(\widehat{D}=\widehat{C}\)

Xét ΔADE vuông tại E và ΔACH vuông tại H có 

AD=AC(A là trung điểm của DC)

\(\widehat{D}=\widehat{C}\)(cmt)

Do đó: ΔADE=ΔACH(cạnh huyền-góc nhọn)

⇒AE=AH(hai cạnh tương ứng)

mà AH là bán kính của đường tròn (A;AH)

nên AE là bán kính của đường tròn (A;AH)

Xét (A;AH) có 

AE là bán kính(cmt)

AE⊥BD tại E(gt)

Do đó: BD là tiếp tuyến của đường tròn(A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)