Cho các số thực x,y,z thoả mãn điều kiện \(\hept{\begin{cases}x\ge2;y\ge9;z\ge1951\\x+y+z=2016\end{cases}}\).Tìm giá trị lớn nhất của xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:\(x+y+z=2016\)
\(\Rightarrow2016-z=x+y\ge2+9=11\)
\(\Rightarrow z\le2016-11=2005\)
Ta lại có: \(x^2+y^2\ge2xy\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{\left(2016-z\right)^2}{4}\)
\(\Leftrightarrow xyz\le\frac{\left(2016-z\right)^2}{4}.z=\frac{z^3}{4}-1008z^2+\frac{2016^2z}{4}\)(1)
Xét hàm số: \(f\left(z\right)=\frac{z^3}{4}-1008z^2+\frac{2016^2z}{4}\)
Ta chứng minh \(f\left(z\right)\) nghịch biến trên \(z\in\left[1951;2005\right]\)
Với mọi \(a,b\in\left[1951;2005\right]\)sao cho với \(a< b\) thì
\(f\left(a\right)-f\left(b\right)=\frac{a^3}{4}-1008a^2+\frac{2016^2}{4}a-\frac{b^3}{4}+1008b^2-\frac{2016^2}{4}b\)
\(=\frac{1}{4}\left(\left(a^3-b^3\right)+\left(-4032a^2+4032b^2\right)+\left(2016^2a-2016^2b\right)\right)\)
\(=\frac{1}{4}\left(a-b\right)\left(a^2+ab+b^2-4032a-4032b+2016^2\right)\)
\(>\frac{a-b}{4}.\left(1951^2+1951.1951+1951^2-4032.2005-4032.2005+2016^2\right)\)
\(=\frac{a-b}{4}.\left(-684861\right)>0\)
\(\Rightarrow f\left(a\right)-f\left(b\right)>0\)
\(\Rightarrow\)Hàm số nghịch biến trên \(\left[1951;2005\right]\)
\(\Rightarrow\)Hàm số đạt giá trị lớn nhất tại z nhỏ nhất
\(\Rightarrow Max\left(f\left(z\right)\right)=\frac{1951^3}{4}-1008.1951^2+\frac{2016^4}{4}.1951=2060743,75\)(2)
Từ (1) và (2) ta có: \(Max\left(xyz\right)=2060743,75\) tại \(\left\{\begin{matrix}x=y=32,5\\z=1951\end{matrix}\right.\)
Cảm ơn bạn, nhưng trong phòng thi ko đc xài máy tính, thì phần tính toán cũng mệt nhỉ :v
\(P=\frac{1}{xy-xyz-z}+\frac{1}{yz-xyz-x}+\frac{1}{xz-xzy-y}\) .Do xyz=-z =>-xyz=1 và x+y+z=0 . Thế vào P ta được \(P=\frac{1}{xy+1+x+y}+\frac{1}{yz+1+y+z}+\frac{1}{xz+1+x+z}\)\(P=\frac{1}{\left(x+1\right)\left(y+1\right)}+\frac{1}{\left(y+1\right)\left(z+1\right)}+\frac{1}{\left(x+1\right)\left(z+1\right)}\) =\(\frac{z+1+x+1+y+1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\)
\(P=\frac{3}{xyz+z+xz+yz+xy+1+x+y}\) =\(\frac{3}{xy+yz+xz}\) (Do x+y+z=0; xyz=-1)
x+y+z=0 => (x+y+z)2=0 => x2+y2+z2 +2(xy+yz+xz)=0 => 2(xy+yz+xz)=-6 => xy+yz+xz=-3 Thế vào P ta được :
\(P=\frac{3}{-3}=-1\) . Chúc bạn học tốt
Lần lượt trừ hai vế của hệ phương trình ta có : \(x^3-y^3=3\left(x-y\right)\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-3\right)=0\)
\(\Leftrightarrow x^2+y^2+xy=3\) ( Do \(x\ne y\)).
Làm tương tự như vậy ta có hệ sau : \(\hept{\begin{cases}x^2+xy+y^2=3\\x^2+xz+z^2=3\\y^2+yz+z^2=3\end{cases}}\) (1)
Làm tương tự như trên, trừ lần lượt từng vế phương trình ta có:
\(x^2+xy+y^2-\left(x^2+xz+z^2\right)=3-3\)
\(\Leftrightarrow xy-xz+y^2-z^2=0\)
\(\Leftrightarrow\left(y-z\right)\left(x+y+z\right)=0\)
\(\Leftrightarrow x+y+z=0\)( do \(x\ne y\))
\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\).
Cộng lần lượt từng vế của 3 phương trình ta được : \(2\left(x^2+y^2+z^2\right)+xy+xz+yz=9\).
Đặt \(a=x^2+y^2+z^2,b=xy+zy+zx\) ta có hệ sau:
\(\hept{\begin{cases}a+2b=0\\2a+b=9\end{cases}\Leftrightarrow\hept{\begin{cases}a=6\\b=-3\end{cases}}}\)
Vậy \(x^2+y^2+z^2=6.\)
Sai đề nhá, đáng lẽ \(0\le x,y,z\le1\)
Ta dễ có:
\(1+y+zx\le x^2+xy+xz\Rightarrow\frac{x}{1+y+zx}\ge\frac{x}{x^2+xy+xz}=\frac{1}{x+y+z}\)
Tương tự:
\(\frac{y}{1+z+xy}\ge\frac{1}{x+y+z};\frac{z}{1+z+yz}\ge\frac{1}{x+y+z}\)
\(\Rightarrow\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+z+yz}\ge\frac{3}{x+y+z}\)
Đẳng thức xảy ra tại x=y=z=1
M giải luôn nha
\(\frac{1}{2}=\frac{x^2}{\left(y+1^2\right)}+\)\(\frac{y^2}{\left(x+1\right)^2}\) \(\ge\frac{2xy}{\left(x+1\right)\left(y+1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\ge4xy\)
\(\Leftrightarrow3xy\le x+y+1\)
Dấu " = " xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}=\frac{y^2}{\left(x+1\right)^2}\\3xy=x+y+1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=y\\3x^2-2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=y=1\left(tm\right)\\x=y=-\frac{1}{3}\left(tm\right)\end{cases}}\)
Vậy ( x ; y ) ......
Ta có: 3xy=x+y+1
\(\Leftrightarrow4xy=xy+x+y+1\)
\(\Leftrightarrow4xy=\left(x+1\right)\left(y+1\right)\)
Lai có:\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{1}{2}=0\)
\(\Leftrightarrow\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=0\)
\(\Leftrightarrow\left(\frac{x}{y+1}-\frac{y}{x+1}\right)^2=0\)
giải tiếp hộ t với. sao t tìm ra 4 nghiệm nhưng thử lại chỉ 2 cái đc
\(\hept{\begin{cases}x^2+y^2=25\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=25\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2.12=25\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=49\\xy=12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=\pm7\\xy=12\end{cases}}\)(*)
+) Xét trường hợp \(x+y=7\), khi đó (*) \(\Rightarrow\hept{\begin{cases}x+y=7\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x\left(7-x\right)=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x^2-7x+12=0\left(\cdot\right)\end{cases}}\)
Giải \(\left(\cdot\right)\), ta có \(x^2-7x+12=0\)\(\Leftrightarrow x^2-3x-4x+12=0\)\(\Leftrightarrow x\left(x-3\right)-4\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Khi \(x=3\)thì \(y=7-x=7-3=4\)
Khi \(x=4\)thì \(y=7-x=7-4=3\)
Vậy ta tìm được 2 cặp số (x;y) là \(\left(3;4\right)\)và \(\left(4;3\right)\)
+) Xét trường hợp \(x+y=-7\), khi đó (*) \(\Rightarrow\hept{\begin{cases}x+y=-7\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-7-x\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x\left(-7-x\right)=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x^2+7x+12=0\left(#\right)\end{cases}}\)
Giải \(\left(#\right)\), ta có \(x^2+7x+12=0\)\(\Leftrightarrow x^2+3x+4x+12=0\)\(\Leftrightarrow x\left(x+3\right)+4\left(x+3\right)=0\)\(\Leftrightarrow\left(x+3\right)\left(x+4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)
Khi \(x=-3\)thì \(y=-7-x=-7-\left(-3\right)=-4\)
Khi \(x=-4\)thì \(y=-7-x=-7-\left(-4\right)=-3\)
Vậy ta tìm được 2 cặp số (x;y) là \(\left(-3;-4\right)\)và \(\left(-4;-3\right)\)
Như vậy ta tìm được 4 cặp giá trị (x;y) thỏa mãn yêu cầu đề bài là \(\left(3;4\right);\left(4;3\right);\left(-3;-4\right)\)và \(\left(-4;-3\right)\)
(x+y+z)²=x²+y²+z²+2(xy+yz+zx)
→ x²+y²+z²=(1/2)²-2.(-2)=17/4
(x+y+z)³=x³+y³+z³+3(x+y)(y+z)(z+x)
=x³+y³+z³+3(x+y+z)(xy+yz+zx)-3xyz
→ x³+y³+z³=(1/2)³+3.(-1/2)-3.1/2.(-2)=13/8
(xy+yz+zx)²=x²y²+y²z²+z²x²+2xyz(x+y+z)
→ x²y²+y²z²+z²x²=(-2)²-2.1/2.(-1/2)=9/2
(x²+y²+z²)(x³+y³+z³)=x^5+y^5+z^5+(x²y²+y²z²+z²x²)(x+y+z)-xyz(xy+yz+zx)
→ x^5+y^5+z^5=17/4.13/8+(-2).(-1/2)-9/2.1/2=181/32
Bạn tìm được GTLN bài này không:
Với \(1951\le x\le2005\)
Tìm GTLN của: \(\frac{x^3}{4}-1008x^2+\frac{2016^2x}{4}\)
bài liên quan tới câu trên hả bạn.Để mình cố tìm xem sao