Cho số thực x,y khác 0 thả mãn \(x^{2013}\)+\(^{y^{2013}}\)=\(x^{2014}\)+\(y^{2014}\)=\(x^{2015}\)+\(y^{2015}\)
Tính S=\(x^{2016}\)+\(y^{2016}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x^{2014}+y^{2014}-2\left(x^{2013}+y^{2013}\right)+x^{2012}+y^{2012}=0\)
\(\Leftrightarrow x^{2012}.\left(x-1\right)^2+y^{2012}.\left(y-1\right)^2=0\)
\(\Rightarrow x=1;y=1\)
\(\Rightarrow P=2\)
Ta có:\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)
\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)
\(\ge\left|x-2013+2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)
\(=3+\left|x-2014\right|+\left|y-2015\right|\)
\(\ge3+0+0=3\)
Mà \(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\)
\(\Rightarrow\) Dấu "=" xảy ra khi và chỉ khi:
\(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2013\le x\le2016\left(1\right)\\x=2014\left(2\right)\\y=2015\end{cases}}\)
Dễ thấy \(\left(2\right)\) thỏa mãn \(\left(1\right)\) nên \(x=2014;y=2015\)
\(x=\frac{-2014}{-2013}=\frac{2014}{2013}>1\)
\(y=\frac{-2015}{-2016}=\frac{2015}{2016}
\(\dfrac{x+2016}{2013}+\dfrac{x+2010}{2014}+\dfrac{x+2010}{2015}+\dfrac{x+2010}{2016}+\dfrac{x+2010}{2015}+\dfrac{x+2016}{2018}\)
Đề sai.