K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2015

\(\Rightarrow x^{2014}+y^{2014}-2\left(x^{2013}+y^{2013}\right)+x^{2012}+y^{2012}=0\)

\(\Leftrightarrow x^{2012}.\left(x-1\right)^2+y^{2012}.\left(y-1\right)^2=0\)

\(\Rightarrow x=1;y=1\)

\(\Rightarrow P=2\)

9 tháng 4 2019

cai gi

6 tháng 2 2019

Ta có:\(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|\)

\(=\left|x-2013\right|+\left|2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)

\(\ge\left|x-2013+2016-x\right|+\left|x-2014\right|+\left|y-2015\right|\)

\(=3+\left|x-2014\right|+\left|y-2015\right|\)

\(\ge3+0+0=3\)

Mà \(\left|x-2013\right|+\left|x-2014\right|+\left|y-2015\right|+\left|x-2016\right|=3\)

\(\Rightarrow\) Dấu "=" xảy ra khi và chỉ khi:

\(\hept{\begin{cases}\left(x-2013\right)\left(2016-x\right)\ge0\\\left|x-2014\right|=0\\\left|y-2015\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2013\le x\le2016\left(1\right)\\x=2014\left(2\right)\\y=2015\end{cases}}\)

Dễ thấy \(\left(2\right)\) thỏa mãn \(\left(1\right)\) nên \(x=2014;y=2015\)

\(x=\frac{-2014}{-2013}=\frac{2014}{2013}>1\)

\(y=\frac{-2015}{-2016}=\frac{2015}{2016}

4 tháng 7 2018

\(\dfrac{x+2016}{2013}+\dfrac{x+2010}{2014}+\dfrac{x+2010}{2015}+\dfrac{x+2010}{2016}+\dfrac{x+2010}{2015}+\dfrac{x+2016}{2018}\)

Đề sai.

4 tháng 7 2018

kể ra tử đều là x+2016 hoặc x+2010 thì còn làm được đó

hehe