Tìm các số tự nhiên n để \(2020+n^2\)là một số chính phương
Như thường lệ, ai đúng và nhanh nhất nhận tích nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ đề bài suy ra 10<=n<=99,suy ra 21<=2n+1<=199
. vì 2n+1 là số lẻ nên có các giá trị là 25,49,81,121,169 tương ứng n có các giá trị 12,24,40,60,80
mà 3n+1 có các giá trị 37,73,121,181,253,nên chỉ có 121 là chung
suy ra:n=40
Ta có 10 <= n <= 99 nên 21 <= 2n + 1 <= 199
Tìm số chính phương lẻ trong khoảng trên ta được 2n + 1 bằng 25; 49; 81; 121; 169 tương ứng với số n bằng 12; 24; 40; 60; 84
Số 3n + 1 bằng 37; 73; 121; 181; 253. Chỉ có 121 là số chính phương. Vậy n = 40
Giả sử n2 + 2016 = m2
2016=m2- n2
2016 = (m - n)(m + n)
Vì 2016 là 1 số chẵn nên trong tích (m - n)(m + n) phải có ít nhất 1 số chẵn (1)
Mặt khác (m + n) - (m - n) = 2n nên cả 2 số phải cùng lẻ hoặc cùng chẵn (2)
Từ (1) và (2) => Cả 2 thừa số đều là chẵn
Đặt m + n = 2h
m - n=2t
Ta có 2h.2t=2016
4.(h.t)=2016
=> 2016 phải chia hết cho 4
Nhưng 2016 ko chia hết cho 4 nên ko có số nào thỏa mãn đề bài
a) Một số tự nhiên chẵn có dạng 2k (k(N), khi đó (2k)2 = 4k2 là số chia hết cho 4 còn số tự nhiên lẻ có dạng 2k+1 (k(N) ,
Khi đó (2k+1)2 = 4k2+ 4k +1 là số chia cho 4 dư 1. Như vậy một số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1 , do đó không thể viết đựơc dưới dạng 4n+2 hoặc 4n+3(n(N)
b) Một số tự nhiên chỉ có thể viết dưới dạng 3k hoặc 3k± 1 (k( N)
khi đó bình phương của nó có dạng (3k)2 =9k2 là số chia hết cho 3 ,hoặc có dạng (3k± 1) 2 = 9k2 ± 6k +1 là số khi chia cho 3 thì dư 1.
Như vậy một số chính phương không thể viết dưới dạng 3n+2(n(N) ĐPCM.
n là số tự nhiên có 2 chữ số nên 10< hoặc = n <100 do đó 21< hoac bang 2n+1<201
2n+1 là số chính phương lẻ nên 2n+1 chỉ có thể nhận 1 trong các giá trị 25;49;81;121;169
suy ra n chỉ có thể nhận 1 trong các giá trị 12;24;40;60;84
suy ra 3n+1 chỉ có thể nhận 1 trong các giá trị 37;73;121;181;253
Trong các số trên chỉ có số 121=11^2 là 1 số chính phương
Vậy số n tự nhiên có 2 chữ số cần tìm là 40
ta có : \(n⋮3;5;7\)mà n nhỏ nhất và n dư 2 ; 4; 6
\(n-2;4;6\in BCNN\left(3;5;7\right)\)
3 = 3 . 1
5 = 5. 1
7 = 7.1
=> BCNN(3;5;7 ) = 3 . 5 . 7 = 105
n - 2= {107}
n - 4 = 109
n - 6 = 111
vì n chia cho 3;5;7 lần lượt có số dư là2;4;6
=>n+1\(\in\)ƯC(3;5;7)
mà n nhỏ nhất
\(\Rightarrow\)n+1\(\in UCLN\left(3;5;7\right)\)
ta có
3=3
5=5
7=7
\(\Rightarrow\)\(UCLN\left(3;5;7\right)=\)3x5x7=105
\(\Rightarrow\)n+1=105
\(\Rightarrow n=105-1=104\)
khi nhân môt số thập phân với 245 một bạn hs đã đặt các tích riêng thẳng cột tức là bạn đã nhân số thập phân lần lượt với 2,4,5.rồi cộng các kết quả lại với nhau
Do đó tích tìm được gấp số thập phân số lần là
2+4+5=11{lần}
Số thập phân ban đầu là
4275:11=387
tích đúng là
387* 245=94815
đáp số 94815
Học lớp 6 thì vào mục lớp 7 làm cái quái j!
Giả sử n2 + 2020 = m2 (n thuộc tập hợp N)
m2 - n2 = 2020
Rồi, tới chỗ này thì lấy cái công thức hằng đẳng thức quen quen j đó mà nó ghi trên thước hay trong tập hoài đó ra.
<=> (m+n)(m-n) = 2020 = 2.2.5.101 (thừa số nguyên tố)
Đến đây thì thua, chỉ còn biết thử-chọn mấy cái tích (m+n) với (m-n) sao cho nó ra 2020 thôi, sao đó dùng tổng-hiệu mà ra m và n. Thử chọn số nào thì cái phần thừa số nguyên tố nói rồi đó.
Nếu m + n = 2020; m - n = 1 thì:
m = (2020 + 1) : 2 = 1010,5
n = 2020 - 1010,5 = 1009,5 (Loại)
Nếu m + n = 1010; m - n = 2 thì:
<=> m = 506
<=> n = 504
Nếu m + n = 505; m - n = 4 thì:
<=> n = 250,5 (Loại)
Nếu m + n = 404; m - n = 5 thì:
<=> n = 199,5 (Loại)
Nếu m + n = 202; m - n = 10 thì:
<=> n = 1005
Nếu m + n = 101; m - n = 20 thì:
<=> n = 40,5 (Loại)
Nếu m + n = -1; m - n = -2020 thì:
<=> n = 1009,5 (Loại)
...
Cứ thử tiếp vậy đó rồi ra kết quả là:
n = 504; 1005; 96
Chịu! Tui mới học lớp 6 thôi mà!
hi hi