K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2017

áp dụng : nếu x+y+z=0 thì x3+y3+z3=3xyz (có thể tự c/m)

trong bài thì x+y+z+3=0  hay (x+1)+(y+1)+(z+1)=0 

17 tháng 8 2019

Đặt x+1=a,y+1=b,z+1=c

Theo bài ra ta có:

A^3+b^3+c^3=3abc

hay (a+b)^3-3a(b^2-)3(a^2)b+c^3-3abc=0

Hay (a+b)^3+c^3-3ab(a+b+c)=0

Hay (a+b+c)((a+b)^2-(a+b)×c+c^2)-3ab(a+b+c)=0

Hay(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0(1)

Mà x+y+z=-3 hay (x+1)+(y+1)+(z+1)=0 hay a+b+c=0(2)

Từ (1)(2) suy ra 0×(a^2+b^2+c^2-ab-bc-ac)=0

Vậy (1) đúng. Đề bài được cm

17 tháng 8 2019

thanks bn nhiều

11 tháng 10 2018

Ta chứng minh đẳng thức sau :

Nếu a + b + c = 0 ⇒ a3 + b3 + c3 = 3abc

Ta có : a + b + c = 0 ⇒ a + b = -c

⇒ (a + b)3 = (-c)3 ⇒ a3 + 3a2b + 3ab2 + b3 = -c3

⇒ a3 + b3 + c3 = -3a2b - 3ab2 ⇒ a3 + b3 + c3 = -3ab(a + b)

Thay a + b = -c vào -3ab(a + b) ta được:

-3ab(a + b) = -3ab.(-c)= 3abc

Vậy nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc.

Quay trở lại với bài toán, ta có:

x + y + z = -3 ⇒ x + 1 + y + 1 + z + 1 = -3 + 1 + 1 + 1

⇒ ( x + 1) + (y + 1) + (z + 1) = 0

Áp dụng đẳng thức nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc vào bài toán, ta có :

(x + 1) + ( y + 1) + ( z + 1 ) = 0

⇒ ( x + 1 )3 + (y + 1 )3 + ( z + 1 )3 = 3(x + 1)(y + 1)(z + 1)

⇒ Nếu x + y + z = -3 thì :

(x + 1)3 + ( y + 1 )3 + ( z + 1 )3 = 3(x + 1)( y + 1 )(z + 1)

9 tháng 1 2018

Ta có :

 \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

Khi đó ta chứng minh được :

\(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)

Mà \(x+y+z=0\)

\(\Rightarrow\)\(x^3+y^3+z^3=3xyz\)

Từ đó ta suy ra :

\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}\)

\(=\frac{\left(3xyz\right)^2-2.3.x^2y^2z^2}{3xyz}\)

\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}\)

\(=xyz\)( ĐPCM )

Hên xui thôi

15 tháng 7 2018

ĐK: \(x,y,z,x+y+z\ne0\)

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{z}-\dfrac{1}{x+y+z}\right)=0\)

\(\Rightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{xy+yz+zx+z^2}{xyz\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\left(x+y\right)\left(\dfrac{\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}\right)=0\)

\(\Rightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)

\(\circledast x=-y\)

\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{-y^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{z^3}\)

\(\dfrac{1}{x^3+y^3+z^3}=\dfrac{1}{-y^3+y^3+z^3}=\dfrac{1}{z^3}\)

Vậy \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{x^3+y^3+z^3}\)

Lầm tương tự với hai trường hợp còn lại ta có đpcm haha

11 tháng 11 2019

Làm theo cách giải trình :P

Ta có:

\(\left(x+y+z\right)^2=1^2\)

\(x^2+y^2+z^2+2.\left(xy+yz+xz\right)=1\)

\(1+2.\left(xy+yz+xz\right)=1\)

\(2.\left(xy+yz+xz\right)=0\Rightarrow xy+yz+xz=0\)

\(\left(x+y+z\right).\left(x^2+y^2+z^2\right)=1.1\)

\(x^3+y^3+z^3+x^2.\left(y+z\right)+y^2.\left(x+z\right)+2^2.\left(x+y\right)=1\)

\(1+x^2y+x^2z+y^2x+y^2z+z^2x+z^2y=1\)

\(xy.\left(x+y\right)+xz.\left(x+z\right)+yz.\left(y+z\right)=0\)

\(xy.\left(x+y+z-z\right)+xz.\left(x+y+z-y\right)+yz.\left(x+y+z-x\right)=0\)

\(xy.\left(1-z\right)+xz.\left(1-y\right)+yz.\left(1-x\right)=0\)

\(xy+xz+yz-3xyz=0\)

Khi: \(xy+yz+xz0,xyz\)cũng bằng 0

đpcm.

NV
21 tháng 1 2021

\(\left(3^x;3^y;3^z\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\ab+bc+ca=abc\end{matrix}\right.\)

BĐT cần chứng minh trở thành:

\(\dfrac{a^2}{a+bc}+\dfrac{b^2}{b+ca}+\dfrac{c^2}{c+ab}\ge\dfrac{a+b+c}{4}\)

Thật vậy, ta có:

\(VT=\dfrac{a^3}{a^2+abc}+\dfrac{b^3}{b^2+abc}+\dfrac{c^3}{c^2+abc}\)

\(VT=\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{b^3}{\left(a+b\right)\left(b+c\right)}+\dfrac{c^3}{\left(a+c\right)\left(b+c\right)}\)

Áp dụng AM-GM:

\(\dfrac{a^3}{\left(a+b\right)\left(a+c\right)}+\dfrac{a+b}{8}+\dfrac{a+c}{8}\ge\dfrac{3a}{4}\)

Làm tương tự với 2 số hạng còn lại, cộng vế với vế rồi rút gọn, ta sẽ có đpcm

23 tháng 9 2015

a/ => (x + 1)(2x2 - 3x + 6) = 0 

=> x + 1 = 0 => x = -1

hoặc 2x2 - 3x + 6 = 0 

Có denta = (-3)2 - 4.2.6 = -39 < 0 

=> pt vô nghiệm 

Vậy x = -1

b/ => x2 + x = 0 => x(x + 1) = 0 

=> x = 0 hoặc x + 1 = 0 => x = -1

Vì x2 + x + 1 > 0 

Vậy x = 0 ; x = -1

c/ tự làm nha ^^

7 tháng 4 2019

1/y+1/x+1/z=0

=>xy+yz+xz=0(tự cm)

(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz=x^2+y^2+z^2=0

x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+3xyz=3xyz

x^6+y^6+z^6=(x^2+y^2+z^2)(X^4+y^4+z^4+x^2y^2+y^2z^2+z^2z^2)+3(xyz)^2=3(xyz)^2

=> (x^6+y^6+z^6)/(x^3+y^3+z^3)=3(Xyz)^2/3xyz=xyz(dpcm)

7 tháng 4 2019

:D???? ể??

\(x+y+z=0\Rightarrow\hept{\begin{cases}x=-y-z\\y=-z-x\\z=-x-y\end{cases}}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow\frac{xy+yz+xz}{xyz}=0\Leftrightarrow xy+yz+xz=0\)

\(\hept{\begin{cases}xy=\left(-y-z\right).y=-y^2-zy\\yz=\left(-x-z\right).z=-z^2-xz\\xz=\left(-y-x\right).x=-x^2-xy\end{cases}}\Rightarrow xy+yz+zx=-\left(x^2+y^2+z^2+xz+xy+zy\right)=0\)

\(\Leftrightarrow x=y=z=0??????\)

p/s: ko biết t lỗi hay đề lỗi ((: