K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2017

Ta có:-(a-b)=-a+b

Nhận thấy vế phải so với vế trái thì không có ngoặc nên ở biểu thức trên đã sử dụng quy tắc dấu ngoặc.

Quy tắc dấu ngoặc:Dấu cộng ở đằng trước dấu trừ thì bên trong vẫn giữ nguyên

Dấu trừ đằng trước dấu ngoặc thì khi bỏ ngoặc, dấu trừ giữ yên, các dấu trong dấu ngoặc sẽ chuyển từ trừ thành cộng, cộng thành trừ.

30 tháng 1 2017

Vì thực hiện theo quy tắc dấu ngoặc

K mk nha

13 tháng 1 2018

Giá trị tuyệt đối của một tổng hai số nguyên nhỏ hơn hoặc bằng tổng các giá trị tuyệt đối của chúng

l a + b l \(\le\)l a l + l b l

Dấu '' = '' xảy ra khi a \(\ge\)\(\ge\)0 hoặc a \(\le\)\(\le\)0

Ví dụ l - 2 + 5 l < l - 2 l + l 5 l

        l 8 + 9 l = l 8 l + l 9 l

        l - 2 + ( - 5 ) l = l - 2 l + l - 5 l

9 tháng 4 2020

Ta có: a < b

=> a - b < 0

=>  a - b - a < 0 - a

=> - b < - a.

Vậy.....

27 tháng 7 2016

a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.

\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6

Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))

b) \(ab.\left(a^2-b^2\right)\)

Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6

Nếu  a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...) 

\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...)  - 1 (2;3;4;5...) = 0

thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.

a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)

Vì a;a-1;a+1 là ba số nguyên liên tiếp

nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)

hay \(a^3-a⋮6\)

b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)

\(=a^3b-ab+ab-ab^3\)

\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)

Vì \(a^3-a⋮6\)

và \(b-b^3=-\left(b^3-b\right)⋮6\)

nên \(ab\left(a^2-b^2\right)⋮6\)

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

23 tháng 10 2016

Ta có: \(a^3b-ab^3=a^3b-ab-ab^3+ab=ab\left(a^2-1\right)-ab\left(b^2-1\right)\)

\(=b\left(a-1\right)a\left(a+1\right)-a\left(b-1\right)b\left(1+1\right)\)

Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

=> \(b\left(a-1\right)a\left(a+1\right);a\left(b-1\right)b\left(b+1\right)⋮6\Rightarrow a^3b-ab^3⋮6\)