K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2015

\(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{x.\left(x+1\right)}=\frac{11}{4}\)

\(3.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{x.\left(x+1\right)}\right)=\frac{11}{4}\)

\(3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{11}{4}\)

\(3.\left(1-\frac{1}{x+1}\right)=\frac{11}{4}\)

\(1-\frac{1}{x+1}=\frac{11}{4}:3=\frac{11}{12}\)

\(\frac{1}{x+1}=1-\frac{11}{12}=\frac{1}{12}\)

\(\Rightarrow x+1=12\)

\(\Rightarrow x=12-1\)

\(\Rightarrow x=11\)

6 tháng 9 2017

\(A=\left(-\frac{5}{11}\right).\frac{7}{15}+\frac{11}{-5}.\frac{30}{33}\)

\(A=-\frac{7}{33}+-2\)

\(A=-\frac{73}{33}\)

[ A] = -2

6 tháng 9 2017

làm đc hết rùi phần b thui

tính hộ mình nha

11 tháng 8 2016

\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{15.16}\)

\(\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right).\frac{1}{x}=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{15.16}\right)\)

\(\frac{8+4+2+1}{16}.\frac{1}{x}=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{15}-\frac{1}{16}\right)\)

\(\frac{15}{16}.\frac{1}{x}=3.\left(1-\frac{1}{16}\right)\)

\(\frac{15}{16}.\frac{1}{x}=3.\frac{15}{16}\)

=> \(\frac{1}{x}=3\)

=> \(x=\frac{1}{3}\)

2 tháng 2 2016

\(\text{Đề }\Leftrightarrow\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)

=> \(\left(1-\frac{1}{10}\right).\left(x-1\right)=x-\frac{1}{3}\)

=> \(\frac{9}{10}.\left(x-1\right)=x-\frac{1}{3}\)

=> \(\frac{9x}{10}-\frac{9}{10}=\frac{3x-1}{3}\)

=> \(\frac{27x}{30}-\frac{27}{30}=\frac{10.\left(3x-1\right)}{30}\)

=> 27x - 27 = 30x - 10

=> 27x - 30x = -10 + 27

=> -3x = 17

=> x = -17/3.

25 tháng 3 2018

x=2009 dễ mà

23 tháng 3 2018

mk làm câu c cho nó dễ

c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010

=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010

=1-1/x+1=2009/2010

=1/x+1=1-2009/2010

=1/x+1=1/2010

=) x+1=2010

x         =2010-1

x         =2009

13 tháng 7 2017

\(1+\frac{1}{3}+\frac{1}{6}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\frac{2}{6}+\frac{2}{12}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\frac{2}{2.3}+\frac{2}{3.4}+....+\frac{2}{x\left(x+1\right)}=4\)

\(\Leftrightarrow1+\left[2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)\right]=4\)

\(\Leftrightarrow1+2\left(\frac{1}{2}-\frac{1}{\left(x+1\right)}\right)=4\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{4-1}{2}=\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=\frac{1}{2}-\frac{3}{2}=-1\)

\(\Leftrightarrow x=-1+1=-2\)

Vậy x = -2 

16 tháng 7 2017

\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2.6}+\frac{2}{2.10}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)

\(\Leftrightarrow2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)

\(\Leftrightarrow2\left(1-\frac{1}{\left(x+1\right)}\right)=1\frac{1991}{1993}\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=1\frac{1991}{1993}\div2\)

\(\Leftrightarrow1-\frac{1}{\left(x+1\right)}=\frac{1992}{1993}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)}=1-\frac{1992}{1993}=\frac{1}{1993}\)

\(\Leftrightarrow x+1=1993\)

\(\Leftrightarrow x=1992\)

26 tháng 3 2019

a)Xét 1/2-1/3-1/6=3/6-2/6-1/6=0

=> (1+2+3+...+2018).(3/1.2+3/2.3+...+3/2018.2019).(1/2-1/3-1/6)=(1+2+3+...+2018).(3/1.2+3/2.3+...+3/2018.2019).0=0

b) 4A=1.2.3.4+2.3.4.4+..+x(x+1)(x+2)4

         =1.2.3.4+2.3.4.5-1.2.3.4+...+x(x+1)(x+2)(x+3)-x(x+1)(x+2)(x-1)

         = (x-1)x(x+1)(x+2)

=> A=x(x+1)(x+2)(x-1)/4

22 tháng 4 2017

\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)

\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)

\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)

\(M=1-\frac{1}{7}=\frac{6}{7}\)

Mình làm câu 1 thoi nha!

22 tháng 4 2017

1.

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)

=\(1-\frac{1}{7}\)

=\(\frac{6}{7}\)

13 tháng 8 2015

a)  \(=\frac{1}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}.\frac{5.5}{4.6}.\frac{6.6}{5.7}=\frac{6}{2.7}=\frac{3}{7}\)

B) \(=\frac{70}{11}+\frac{1}{9}-\frac{37}{11}-\frac{1}{9}=\left(\frac{70}{11}-\frac{37}{11}\right)+\left(\frac{1}{9}-\frac{1}{9}\right)=\frac{33}{11}+0=3\)

BÀI 2:

A) \(\Leftrightarrow\frac{7}{2}x-\frac{x}{2}+\frac{2x}{2}=\frac{7}{2}.\frac{5}{6}\)

\(\Leftrightarrow\frac{7x-x+2x}{2}=\frac{35}{12}\)

\(\Leftrightarrow\frac{8x}{2}=\frac{35}{12}\)

\(\Leftrightarrow8x.12=35.2\Leftrightarrow96x=70\Leftrightarrow x=\frac{70}{96}=\frac{35}{48}\)

b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)

\(x-\frac{3}{1.2}+x-\frac{3}{2.3}+....x+\frac{3}{99.100}=1\)

\(\Leftrightarrow\left(x+x+x+...+x\right)-3\left(\frac{1}{1.2}+\frac{1}{1.3}+....+\frac{1}{99.100}\right)=1\)

ngoặc 1 có 99 số hạng x

\(\Leftrightarrow99x-3\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=1\)

\(\Leftrightarrow99x-3\left(1-\frac{1}{100}\right)=1\)

\(\Leftrightarrow99x-3.\frac{99}{100}=1\)

\(\Leftrightarrow99x=1+\frac{3.99}{100}\)

\(\Leftrightarrow99x=\frac{397}{100}\)

\(\Leftrightarrow x=\frac{397}{100.99}=\frac{397}{9900}\)