1.Tìm các số nguyên x , y ,z biết
x/2 = x+y/3 = x+y+z/5 =10
2.Tim n thuoc Z de P có giá trị nguyên , biết
P= 12/3n-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)
<=> 3(2n+5) chia hết cho (3n+1)
<=>(6n+15) chia hết cho (3n+1)
<=> (6n + 2 +13) chia hết cho (3n+1)
<=> 13 chia hết cho (3n+1)
=> (3n+1) thuộc Ư(13)
Vì n thuộc N
=> (3n+1) = 1,13
=> n = 0 hoặc 4
b)Trong phần này ta sẽ áp dung 1 tính chất sau:
a/b < (a+m)/(b+m) với a<b
Ta thấy :
x/(x+y) > x/(x+y+z)
y/(y+z) > y/(x+y+z)
z/(z+x) > z/(x+y+z)
=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)
=> A>1
Ta thấy :
x/x+y < (x+z)/(x+y+z)
y/y+z < (y+x)/(x+y+z)
z/z+x < (z+y)/(x+y+z)
=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)
=>A< 2(x+y+z)/(x+y+z)
=> A<2
=>1<A<2
=> A ko phải là số nguyên(đpcm)
\(\frac{x}{2}=10\Leftrightarrow x=20\)
\(x+\frac{y}{3}=20+\frac{y}{3}=10\)\(\Leftrightarrow\frac{y}{3}=-10\Rightarrow y=-30\)
\(x+y+\frac{z}{5}=10\Leftrightarrow20+-30+\frac{z}{5}=10\)
\(\frac{z}{5}=20\Leftrightarrow z=100\)
Vậy \(x=20;y=-30;z=100\)
2. Để P là một số nguyên thì \(12⋮3n-1\)
\(3n-1\inƯ\left(12\right)\)
\(3n-1\in\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
\(3n\in\left\{-11;-5;-3;-2;-1;0;2;3;4;5;7;13\right\}\)