Cho nửa đường tròn tâm O đường kính BC và một điểm A trên nửa đường tròn đó ( cung AB > AC ) . Các tiếp tuyến với đường trong O tại A và B cắt nhau tại D. Gọi E là giao điểm của tia CA và tia BD; F là giao điểm của tia BD và tia AO; K là giao điểm của tia DA và tia BC. Cmr: Tia FC vuông góc với tia EK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc EAB=1/2*90=45 độ
=>góc AEB=45 độ
b: góc EFD=góc FAB+góc FBA=90 độ+góc DAB
góc ECD+góc ACD=180 độ
=>góc ECD=góc DBA
=>góc EFD+góc ECD=180 độ
=>CDFE nội tiếp
Cô hướng dẫn nhé nguyen van vu :)
a. Ta có góc COD = COM + MOD = \(\frac{AOM}{2}+\frac{BOM}{2}=\frac{180}{2}=90^o\)
b. Dễ thấy E là trung điểm CD, O là trung điểm AB nên OE song song AC. Vậy OE vuông góc AB.
c. Gọi MH là đường thẳng vuông góc AB, Ta chứng minh BC, AD đều cắt MH tại trung điểm của nó.
Gọi I là giao của AM và BD. Đầu tiên chứng minh ID = DB. Thật vậy, góc MID=IMD (Cùng bằng cung AM/2)
nên ID =MD, mà MD=DB nên ID=DB.
Gọi K là giao của MH và AD.
Theo Talet , \(\frac{MK}{DI}=\frac{AK}{AD}=\frac{KH}{BD}\Rightarrow MK=KH\)
Tương tự giao điểm của BC với MH cũng là trung điểm MH.
Tóm lại N trùng K hay MN vuông góc AB.
a: Xét (O) có
DA,DC là tiếp tuyến
nên DA=DC và OD là phân giác của góc AOC(1)
mà OA=OC
nen OD là trung trực của AC
Xét (O) có
EC,EB là tiếp tuyến
nên EB=EC và OE là phân giác của góc COB(2)
mà OB=OC
nên OE là trung trực của BC
Từ (1), (2) suy ra góc DOE=1/2*180=90 độ
Xét tứ giác CHOK co
góc CHO=góc CKO=góc HOK=90 độ
nên CHOK là hình chữ nhật
b: OH*OD+OK*OE
=OC^2+OC^2
=2*OC^2
(Quá lực!!!)
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)