cho :\(\frac{a}{b}=\frac{c}{d}\)
từ đó chứng minh:\(\frac{a+b}{b}=\frac{c+d}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a^{2k}+b^{2k}}{c^{2k}+d^{2k}}=\frac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}=\frac{\left(a^{2k}+b^{2k}\right)+\left(a^{2k}-b^{2k}\right)}{\left(c^{2k}+d^{2k}\right)+\left(c^{2k}-d^{2k}\right)}=\frac{a^{2k}+b^{2k}-a^{2k}+b^{2k}}{c^{2k}+d^{2k}-c^{2k}+d^{2k}}=\frac{2a^{2k}}{2c^{2k}}=\frac{2b^{2k}}{2d^{2k}}\)
=>\(\left(\frac{a}{b}\right)^{2k}=\left(\frac{c}{d}\right)^{2k}\)=>\(\frac{a}{b}=\frac{c}{d}\)hoặc\(\frac{a}{b}=-\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)(1)
\(\Rightarrow\frac{a+c}{b+d}=\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\)(2)
và \(\frac{a-c}{b-d}=\frac{bk-dk}{b-d}=\frac{k\left(b-d\right)}{b-d}=k\)(3)
Từ (1), (2) và (3) suy ra \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\left(đpcm\right)\)
Ta có \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\left(a+c\right).\left(b-d\right)=\left(b+d\right).\left(a-c\right)\)
\(\Rightarrow\left(ab+bc\right)-\left(ad+cd\right)=\left(ab+ad\right)-\left(bc+dc\right)\)
\(\Rightarrow ab+bc-ad-cd=ab+ad-bc-dc\)
\(\Rightarrow bc-ad=ad-bc\)
\(\Rightarrow bc+bc=ad+ad\)
\(\Rightarrow2bc=2ad\)
\(\Rightarrow bc=ad\)
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)(theo đề bài cho)
Vậy bài toán dc c/m
Bài 1:
Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)
Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.
Bài 2: 2 bài đều dùng Svac cả!
\(a,b,c,d>0\). Chứng minh \(1< \frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
\(1< A=\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
(*) C/m A>2
Trước hết ta có với x>y>0 và m>0
luôn có \(\frac{y}{x}< \frac{y+p}{x+p}\) (1)
c/m: \(\Leftrightarrow xy+ym< xy+xm\Leftrightarrow m\left(x-y\right)>0\) luôn đúng => (1) được c/m.
áp (1) vào từng số hạng của A ta có
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+d}{d+a+b+c}\\ \)
\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{b+c}{a+b+c+d}+\frac{c+d}{d+a+b+c}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)=>(*) dpc/m
(**)C/m A>1: ta có với x>0 và m>0=> \(x>\frac{x}{x+m}\\ \) (2)
Áp (2) vào tầng số hạng của A ta có
\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{b+c+d+a}+\frac{d}{d+a+b+c}\\ \)
\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{b+c+d+a}+\frac{d}{d+a+b+c}=\frac{a+b+c+d}{a+b+c+d}=1\) => (**)dpcm
Từ (*) và (**) =>\(1< A< 2\)=> dpcm
Có \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}\)
Mà \(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
Nên \(\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)
1. a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(1\right)\)
\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)
Từ (1) và (2) => \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
c,
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
=> \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó \(\frac{ab}{cd}=\frac{b^2k}{d^2k}=\frac{b^2}{d^2}\) (3)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2k^2-b^2}{d^2k^2-d^2}=\frac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\frac{b^2}{d^2}\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
@@ Học tốt
Chiyuki Fujito
Áp dụng tính chất dãy tỉ số bằng nhua ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
Mà \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)(đpcm)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}.\frac{a+b+c}{b+c+d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Thay vào đẳng thức ta có :
\(\frac{bk-b}{bk}=\frac{dk-d}{dk}\)
\(\frac{b\left(k-1\right)}{bk}=\frac{d\left(k-1\right)}{dk}\)
\(\frac{k-1}{k}=\frac{k-1}{k}\left(đpcm\right)\)
Vì \(a,b,c,d\ne0\) \(\Rightarrow\frac{a}{b}\) \(=\frac{c}{d}\) \(=k\left(k\ne0\right)\)
\(\Rightarrow a=kb,c=kd\)
\(\Rightarrow\frac{a-b}{a}\) \(=\frac{kb-b}{kb}\) \(=\frac{b\left(k-1\right)}{kb}\) \(=\frac{k-1}{k}\) \(\left(1\right)\)
\(\frac{c-d}{c}\) \(=\frac{kd-d}{kd}\) \(=\frac{d\left(k-1\right)}{kd}\) \(=\frac{k-1}{k}\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\frac{a-b}{a}\) \(=\frac{c-d}{c}\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\)
<=> \(1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
<=>\(\frac{b}{a+b}-\frac{b}{b+c}+\frac{d}{c+d}-\frac{d}{d+a}=0\)
<=>\(b.\frac{b+c-a-b}{\left(a+b\right)\left(b+c\right)}+d.\frac{d+a-c-d}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}-\frac{d\left(c-a\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>\(\left(c-a\right).\frac{b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+d\right)\left(d+a\right)}=0\)
<=> \(\orbr{\begin{cases}c-a=0\\b\left(c+d\right)\left(d+a\right)-d\left(a+b\right)\left(b+c\right)=0\end{cases}}\)
<=>\(\orbr{\begin{cases}c=a\left(KTM\right)\\abc-acd+bd^2-b^2d=0\end{cases}}\)
<=>\(\left(b-d\right)\left(ac-bd\right)=0< =>\orbr{\begin{cases}b-d=0\\ac-bd=0\end{cases}< =>\orbr{\begin{cases}b=d\left(KTM\right)\\ac=bd\end{cases}}}\)
=> \(abcd=\left(ac\right)^2\) => \(abcd\)là số chính phương ( ĐPCM)
----Tk mình nha----
~~Hk tốt~~
\(\frac{a}{b}=\frac{c}{d}\)
Áp dụng tính chát dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy: \(\frac{a}{b}=\frac{a+c}{b+d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\left(đpcm\right)\)
#
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a+b}{c}=\frac{c+d}{d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
=>\(\frac{a}{b}+1=\frac{c}{d}+1\)
=>\(\frac{a}{b}+\frac{b}{b}=\frac{c}{d}+\frac{d}{d}\)
=>\(\frac{a+b}{b}=\frac{c+d}{d}\)
=>ĐPCM