Chứng minh biểu thức :
( a + b ) . ( c + d ) - ( a + d ) . ( b + c ) = ( a - c ) . ( d - b )
Ai làm đc nhanh nhất mk tk cho nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://olm.vn/hoi-dap/detail/26908384795.html
Bạn tham khảo ở đây nha !
Chúc bạn hok tốt
Ta có \(VT=\left(a+b\right)\left(c+d\right)-\left(a+d\right)\left(b+c\right)\)
\(=ac+ad+bc+bd-ab-ac-bd-cd\)
\(=ad+bc-ab-cd\)
\(=a\left(d-b\right)-c\left(d-b\right)=\left(a-c\right)\left(d-b\right)=VP\)(đpcm)
\(b)\)
\(4n-3⋮3n-2\)
\(\Leftrightarrow3\left(4n-3\right)⋮3n-2\)
\(\Leftrightarrow12n-9⋮3n-2\)
\(\Leftrightarrow\left(12n-8\right)-1⋮3n-2\)
\(\Leftrightarrow4\left(3n-2\right)-1⋮3n-2\)
\(\Leftrightarrow1⋮3n-2\)
\(\Leftrightarrow3n-2\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow3n\in\left\{1;3\right\}\)
Mà: \(3n⋮3\)
\(\Leftrightarrow3n=3\)
\(\Leftrightarrow n=1\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{c}.\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}.\frac{b}{d}=\frac{a-b}{c-d}.\frac{a-b}{c-d}.\frac{a-b}{c-d}=\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a-b}{c-d}\right)^3\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a-b}{c-d}\right)^3=\frac{a^3+b^3}{c^3+d^3}\)
đpcm
Tham khảo nhé~
Áp dụng công thức tỉ lệ phân số ta có :
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{c^2}{d^2}=\dfrac{ac}{bd}\)
(a + b)(c + d) - (a + d)(b + c)
= a(c + d) + b(c + d) - [ a(b + c) + d(b + c)]
= ac + ad + bc + bd - [ ab + ac + bd + cd]
= ac + ad + bc + bd - ab - ac - bd - cd
= (ac - ac) + (bd - bd) + ad + bc - ab - cd
= ad + bc - ab - cd
= ad - ab - cd + bc
= a(d - b) - c(d - b)
= (a - c)(d - b) (ĐPCM)
3555555555555555555