Phân tích thành nhân tử
a/ 4x^2 + 4x +1
b/ x^2 - 25x + 10
c/ 81y^4 - 16x^6
d/ 4x^2 + y^2 + z^2 + 4xy + 2yz + 4xz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(x^2-6x+9-y^2\)
\(=\left(x-3\right)^2-y^2\)
\(=\left(x-y-3\right)\left(x+y-3\right)\)
b: Ta có: \(x^3+4x^2+4x\)
\(=x\left(x^2+4x+4\right)\)
\(=x\left(x+2\right)^2\)
c: Ta có: \(4xy-4x^2-y^2+9\)
\(=-\left(4x^2-4xy+y^2-9\right)\)
\(=-\left(2x-y-3\right)\left(2x-y+3\right)\)
a,x^2-x-y^2-y
=x^2-y^2-(x+y)
=(x-y).(x+y)-(x+y)
=(x+y).(x-y-1)
b, x^2-2xy+y^2-z^2
=(x^2-2xy+y^2)-z^2
=(x-y)^2-z^2
=(x-y-z)(x-y+z)
c,5x-5y+ax-ay( đề bài ở đây phải là -ay ms tính đc)
=(5x-5y)+(ax-ay)
=5(x-y)+a(x-y)
=(x-y).(5+a)
d,a^3-a^2.x-ay+xy
=(a^3-a^2x)-(ay-xy)
=a^2(a-x)-y(a-x)
=(a-x)(a^2-y)
e,4x^2-y^2+4x+1
={(2x)^2+4x+1}-y^2
=(2x+1)^2-y^2
=(2x+1+y^2)(2x+1-y^2)
f,x^3-x+y^3-y
=(x^3+y^3)-(x+y)
=(x+y)(x^2-xy+y^2)-(x+y)
=(x+y)(x^2-xy+y^2-1)
a) \(=\left(2x-1\right)^2\)
b) \(=x\left(y^2-x^2+2x-1\right)=x\left[y^2-\left(x-1\right)^2\right]=x\left(y-x+1\right)\left(y+x-1\right)\)
Bài 1:
\(a,=11\left(x+y\right)+x\left(x+y\right)=\left(x+11\right)\left(x+y\right)\\ b,=225-\left(2x+y\right)^2=\left(15-2x-y\right)\left(15+2x+y\right)\)
Bài 2:
\(A=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\\ A=\left(72-2\right)\left(120-2\right)=70\cdot118=8260\)
Bài 3:
\(a,\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\\ b,\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\\ \Leftrightarrow24x+25=49\\ \Leftrightarrow24x=24\Leftrightarrow x=1\)
Ta có : \(4x^2+2y^2+2z^2-4xy+2yz-6y-10z+34=0\)
\(\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)
\(\Leftrightarrow\left(y+z-2x\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}y+z-2x=0\\y=3\\z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Suy ra \(M=2\)
Ta có : 4x^2+2y^2+2z^2-4xy+2yz-6y-10z+34=04x2+2y2+2z2−4xy+2yz−6y−10z+34=0
\Leftrightarrow\left(4x^2+y^2+z^2-4xy-4xz+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0⇔(4x2+y2+z2−4xy−4xz+2yz)+(y2−6y+9)+(z2−10z+25)=0
\Leftrightarrow\left(y+z-2x\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0⇔(y+z−2x)2+(y−3)2+(z−5)2=0
\(\Leftrightarrow\hept{\begin{cases}y+z-2x=0\\y=3\\z=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Suy ra M=2M=2
2:
a: \(x^2-12x+20\)
\(=x^2-2x-10x+20\)
=x(x-2)-10(x-2)
=(x-2)(x-10)
b: \(2x^2-x-15\)
=2x^2-6x+5x-15
=2x(x-3)+5(x-3)
=(x-3)(2x+5)
c: \(x^3-x^2+x-1\)
=x^2(x-1)+(x-1)
=(x-1)(x^2+1)
d: \(2x^3-5x-6\)
\(=2x^3-4x^2+4x^2-8x+3x-6\)
\(=2x^2\left(x-2\right)+4x\left(x-2\right)+3\left(x-2\right)\)
\(=\left(x-2\right)\left(2x^2+4x+3\right)\)
e: \(4y^4+1\)
\(=4y^4+4y^2+1-4y^2\)
\(=\left(2y^2+1\right)^2-\left(2y\right)^2\)
\(=\left(2y^2+1-2y\right)\left(2y^2+1+2y\right)\)
f; \(x^7+x^5+x^3\)
\(=x^3\left(x^4+x^2+1\right)\)
\(=x^3\left(x^4+2x^2+1-x^2\right)\)
\(=x^3\left[\left(x^2+1\right)^2-x^2\right]\)
\(=x^3\left(x^2-x+1\right)\left(x^2+x+1\right)\)
g: \(\left(x^2+x\right)^2-5\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)^2-2\left(x^2+x\right)-3\left(x^2+x\right)+6\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-3\left(x^2+x-2\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-3\right)\)
\(=\left(x^2+x-3\right)\left(x+2\right)\left(x-1\right)\)
h: \(\left(x^2+2x\right)^2-2\left(x+1\right)^2-1\)
\(=\left(x^2+2x+1-1\right)^2-2\left(x+1\right)^2-1\)
\(=\left[\left(x+1\right)^2-1\right]^2-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-2\left(x+1\right)^2+1-2\left(x+1\right)^2-1\)
\(=\left(x+1\right)^4-4\left(x+1\right)^2\)
\(=\left(x+1\right)^2\left[\left(x+1\right)^2-4\right]\)
\(=\left(x+1\right)^2\left(x+1+2\right)\left(x+1-2\right)\)
\(=\left(x+1\right)^2\cdot\left(x+3\right)\left(x-1\right)\)
i: \(x^2+4xy+4y^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-4\left(x+2y\right)+3\)
\(=\left(x+2y\right)^2-\left(x+2y\right)-3\left(x+2y\right)+3\)
\(=\left(x+2y\right)\left(x+2y-1\right)-3\left(x+2y-1\right)\)
\(=\left(x+2y-1\right)\left(x+2y-3\right)\)
j: \(x\cdot\left(x+1\right)\left(x+2\right)\left(x+3\right)-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
\(=\left(x^2-3x\right)^2+2\left(x^2-3x\right)-3\)
\(=\left(x^2-3x+3\right)\left(x^2-3x-1\right)\)
a/ 4x^2 + 4x +1=(2x)2+2.2x.1+12=(2x+1)2=(2x+1)(2x+1)
c/ 81y^4 - 16x^6=(9y2)2-(4x3)2=(9y2+4x3)(9y2-4x3)
d/ 4x^2 + y^2 + z^2 + 4xy + 2yz + 4xz=[(2x)2+4xy+y2]+(4xz+2yz)+z2
=(2x+y)2+2z(2x+y)+z2
=(2x+y+z)2
=(2x+y+z)(2x+y+z)