Giải giúp mk với :(x-1).(2x+4)<0;(6-2x).(x+5)>0 và (x+2).(3x-9)<0 .Cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(x^4-2x^2-144x+1295=0\)
\(\Rightarrow\)Cậu xem lại đề thử xem nhé !
2) \(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+2x\right)\left(x^2-1\right)-24=0\)
\(\Leftrightarrow x^4+2x^3-x^2-2x-24=0\)
\(\Leftrightarrow x^4+x^3+4x^2+x^3+x^2+4x-6x^2-6x-24=0\)
\(\Leftrightarrow x^2\left(x^2+x+4\right)+x\left(x^2+x+4\right)-6\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\)\(x+3=0\)
hoặc \(x-2=0\)
hoặc \(x^2+x+4=0\)
\(\Leftrightarrow\)\(x=-3\left(tm\right)\)
hoặc \(x=2\left(tm\right)\)
hoặc \(\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-3;2\right\}\)
3) \(x^4-2x^3+4x^2-3x-10=0\)
\(\Leftrightarrow x^4+x^3-3x^3-3x^2+7x^2+7x-10x-10=0\)
\(\Leftrightarrow x^3\left(x+1\right)-3x^2\left(x+1\right)+7x\left(x+1\right)-10\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-3x^2+7x-10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3-2x^2-x^2+2x+5x-10\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)+5\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2-x+5\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(x-2=0\)
hoặc \(x^2-x+5=0\)
\(\Leftrightarrow x=-1\left(tm\right)\)
hoặc \(x=2\left(tm\right)\)
hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\)
Vậy tập nghiệm của phương trình là :\(S=\left\{-1;2\right\}\)
a, Xét : x-4 = 0 => x= 4
2x+1 = 0 => x= \(\frac{1}{2}\)
x+3 = 0 => x = -3
x + 9 = 0 => x = -9
Khi đó ta có bảng xét dấu :
x | -9 | -3 | \(\frac{1}{2}\) | 4 |
x-4 | -13 | -7 | \(\frac{-7}{2}\) | 0 |
2x+1 | -17 | -5 | 2 | 9 |
x+3 | -6 | 0 | \(\frac{7}{2}\) | 7 |
x+9 | 0 | 6 | \(\frac{19}{2}\) | 13 |
=> có 5 trường hợp:
TH1 : \(x\le-9\)
TH2 : \(-9\le x< -3\)
TH3 : \(-3\le x< \frac{1}{2}\)
TH4 : \(\frac{1}{2}\le x< 4\)
Do đó :
TH1 : \(x\le-9\)
Ta có : /x-4/ = -(x-4) = 4 - x
/2x+1/ = -(2x+1) = -2x -1
/x+3/ = -(x + 3 ) = -x - 3
/x-9/ = -(x-9) = -x + 9 Thay vào đề bài ta có:
3.(4-x) + 2x-1 +5(-x - 3) -x-9 = 5
=> 12 - 3x + 2x - 1 + -5x - 15 - x - 9 = 5
=>(12 - 1 - 15 -9 ) +(-3x +2x -5x -x) = 5
=> -13 - 7x = 5
7x = -13 - 5
7x = -18
x = \(\frac{-18}{7}\)( Ko TM)
Tương tự với 4 trường hợp còn lại.
\(1,\left(3x+2\right)\left(5-x^2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\5-x^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\-x^2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\pm\sqrt{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{2}{3};-\sqrt{5};\sqrt{5}\right\}\)
\(2,-2x-\dfrac{2}{3}\left(\dfrac{3}{4}-\dfrac{1}{8}x\right)=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow-2x-\dfrac{1}{2}+\dfrac{1}{12}x=-\dfrac{1}{8}\)
\(\Leftrightarrow-2x+\dfrac{1}{12}x=-\dfrac{1}{8}+\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{23}{12}=\dfrac{3}{8}\)
\(\Leftrightarrow x=-\dfrac{9}{46}\)
Vậy \(S=\left\{-\dfrac{9}{46}\right\}\)
\(3,\dfrac{1}{12}:\dfrac{4}{21}=3\dfrac{1}{2}:\left(3x-2\right)\)
\(\Leftrightarrow\dfrac{1}{12}.\dfrac{21}{4}=\dfrac{7}{2}.\dfrac{1}{3x-2}\)
\(\Leftrightarrow\dfrac{7}{16}=\dfrac{7}{6x-4}\)
\(\Leftrightarrow6x-4=7:\dfrac{7}{16}\)
\(\Leftrightarrow6x-4=16\)
\(\Leftrightarrow x=\dfrac{10}{3}\)
Vậy \(S=\left\{\dfrac{10}{3}\right\}\)
\(4,\dfrac{x-1}{x+2}=\dfrac{4}{5}\left(dk:x\ne-2\right)\)
\(\Rightarrow5\left(x-1\right)=4\left(x+2\right)\)
\(\Rightarrow5x-5=4x+8\)
\(\Rightarrow x=13\left(tmdk\right)\)
Vậy \(S=\left\{13\right\}\)
a) (x – 3)3 – (x – 3)(x2 + 3x + 9) + 9(x + 1)2(x – 3)3 – (x – 3)(x2 + 3x + 9) + 9(x + 1)2 = 15;
b) x(x – 5)(x + 5) – (x + 2)( x2x2 - 2x + 4) = 3.
a) \(||2x-3|-4x|=5\)
TH1: \(|2x-3|-4x=5\)
\(\Leftrightarrow|2x-3|=5+4x\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=5+4x\\2x-3=-5-4x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-4x=5+3\\2x+4x=-5+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-2x=8\\6x=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{-1}{3}\end{cases}}\)
TH2: \(|2x-3|-4x=-5\)
\(\Leftrightarrow|2x-3|=-5-4x\)<0 ( loại )
Vậy \(x\in\left\{-4;\frac{-1}{3}\right\}\)
x chia hết 2x +1
để x chia hết 2x +1 thì giá trị tuyệt đối x \(\ge\) giá trị tuyệt đối 2x+1 hoặc x =0
mà giá trị tuyệt đối của x luôn < giá trị tuyệt đối 2x+1
vậy x =0
a) 2/3x +1/2 = 1/10
=> 2/3x = 1/10 - 1/2
2/3x = -2/5
=> x = -2/5 : 2/3
x = -3/5
b) (4,5 - 2x) : 3/4 = \(1\frac{1}{3}=\frac{4}{3}\)
=> 4,5 - 2x = 4/3 x 3/4
4,5 - 2x = 1
-2x = 4,5 - 1
-2x = 3,5
=> x = 3,5 : (-2)
x = - 1,75
c) x/4 = 5/20
=> x = 5/20 x 4
x = 1
d) ?????
2/3x+1/2=1/10
<=>2/3x=1/10-1/2
<=>2/3x=-2/10
=>x=-2/10 chia 2/3=-3/10
ý kia tương tự
1) 2x+108 chia hết cho 2x+3
<=> 2x+3+108 chia hết cho 2x+3
<=> 108 chia hết cho 2x+3
=> 2x+3 thuộc Ư(108)
Vì 2x+3 lẻ
=> Ư(108)={1;-1;27;-27}
Với 2x+3=1 <=> 2x=-2 <=> x=-1
Với 2x+3=-1 <=> 2x=-4 <=> x=-2
Với 2x+3=27 <=> 2x=24 <=> x=12
Với 2x+3=-27 <=> 2x=-30 <=> x=-15
Vậy x thuộc {-1;-2;12;-15}
2) x+13 chia hết cho x+1
<=> x+1+12 chia hết cho x+1
<=> 12 chia hết cho x+1
=> x+1 thuộc Ư(12)
Ư(12)={1;-1;2;-2;-4;4;3;-3;12;-12}
Với x+1=1 <=> x=0
Với x+1=-1 <=> x=-2
..............
Vậy x thuộc {0;-2;-3;3;5;-4;-2;-11;13}
a) 2x+ 108\(⋮\) 2x+ 3.
Mà 2x+ 3\(⋮\) 2x+ 3.
=>( 2x+ 108)-( 2x+ 3)\(⋮\) 2x+ 3.
=> 2x+ 108- 2x- 3\(⋮\) 2x+ 3.
=> 95\(⋮\) 2x+ 3.
=> 2x+ 3\(\in\) { 1; 5; 19; 95}.
Ta có bảng sau:
=> x\(\in\){1; 8; 46}.
Vậy x\(\in\){ 1; 8; 46}.
b) x+ 13\(⋮\) x+ 1.
Mà x+ 1\(⋮\) x+ 1.
=>( x+ 13)-( x+ 1)\(⋮\) x+ 1.
=> x+ 13- x- 1\(⋮\) x+ 1.
=> 12\(⋮\) x+ 1.
=> x+ 1\(\in\){ 1; 2; 3; 4; 6; 12}.
Ta có bảng sau:
=> x\(\in\){ 0; 1; 2; 3; 5; 11}.
Vậy x\(\in\){ 0; 1; 2; 3; 5; 11}.
Tìm x nha các bn
xin loi nhung mik hong bit