Tìm n thuộc N
(6n + 9) chia hết cho (4n-1) với n_>hoặc bằng 1
Ai đó làm hộ mình cái không làm xong bài này thì không được nghỉ tết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - x + 2 chia hết cho x - 1
=> x(x - 1) + 2 chia hết cho x - 1 (1)
Mà x - 1 chia hết cho x - 1 => x(x - 1) chia hết cho x - 1 (2)
Từ (1) và (2) => 2 chia hết cho x - 1
=> x - 1 thuộc Ư(2)
=> x - 1 thuộc {-1; 1; -2; 2}
=> x thuộc {0; 2; -1; 3}
Vậy...
Bài 1 b ) n chia hết cho n => 4n chia hết cho n
=> 15-4n +4n chia hết cho n hay 15 chia hết cho n
=> n E Ư( 15) mà n < 4 => n = 1 ; 3
Các câu còn lại bạn làm tương tự nhé
Ta có : 6n + 5 chia hết cho 2n - 1
<=> 6n - 3 + 8 chia hết cho 2n - 1
<=> 3(2n - 1) + 8 chia hết cho 2n - 1
<=> 8 chia hết cho 2n - 1
<=> 2n - 1 thuôc Ư(8) = ......
=> 2n = .......
=> n = ......
Ta có : 6n + 3 chia hết cho 4n + 1
<=> 2(6n + 3) chia hết cho 4n + 1
<=> 12n + 6 chia hết cho 4n + 1
<=> 12n + 3 + 3 chia hết cho 4n + 1
<=> 3(4n + 1) + 3 chia hết cho 4n + 1
<=> 3 chia hết cho 4n + 1
<=> 4n + 1 thuộc Ư(3)
tự giải tiếp
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
với cả ( 15 - 2n ) chia hết cho n + 1 ( với n < hoặc bằng 7 )
6n + 9 chia hết cho 4n - 1
4(6n + 9) chia hết cho 4n - 1
4.6n + 36 chia hết cho 4n - 1
6.4n - 6 + 6 + 36 chia hết cho 4n - 1
6.(4n - 1) + 42 chia hết cho 4n - 1
=> 42 chia hết cho 4n - 1
=> 4n - 1 thuộc Ư(42) = {1 ; 2 ; 3 ; 6 ; 7 ; 14 ; 21 ; 42}
Ta có bảng sau :
Vì n >= 1
=> n = {1 ; 2}