Cho tam giác ABC vuông tại A có AC =1/2BC. Trên tia đối của tia AC lấy điểm D sao cho AD =AC
a chứng minh BC=BD
b chứng minh tam giác BCD là tam giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh được tam giác ABC = tam giác A.BD (c-g-c), từ đó suy ra được tam giác BCD đều
b) Dùng kết quả câu a, ta có BC = CD = 2AC
xét tam giác ABC vuông tại A có AC = 1/2BC (gt)
=> góc ABC = 30 (đl)
xét tam giác ABC có : góc ABC + góc ACB + góc BAC = 180 (Đl)
góc BAC = 90 do tam giác ABC vuông tại A (Gt)
=> góc BCA = 60
tự chứng minh tam giacs BAD = tam giác BAC theo trường hợp 2cgv nhé
=> BD = BC (đn)
=> tam giác BDC cân tại B (đn) có góc BCA = 60(cmt)
=> tam giác BDC đều
a: BC=căn 8^2+6^2=10cm
b: Xét ΔCBD có
CA vừa là đường cao, vừa là trung tuyến
=>ΔCBD cân tại C
=>CB=CD
Xét ΔCDE và ΔCBE có
CD=CB
góc DCE=góc BCE
CE chung
=>ΔCDE=ΔCBE
c: ΔCBD có CB=CD nên ΔCBD cân tại C
a: Sửa đề: Tính BC
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
c: Ta có: ΔABC=ΔABD
=>\(\widehat{ABC}=\widehat{ABD}\)
Xét ΔBEA vuông tại E và ΔBFA vuông tại F có
BA chung
\(\widehat{EBA}=\widehat{FBA}\)
Do đó: ΔBEA=ΔBFA
=>AE=AF
=>ΔAEF cân tại A
a: Sửa đề: tính AB
AB=căn 5^2-3^2=4cm
b: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
=>ΔABC=ΔABD
c: ΔABC=ΔABD
=>BC=BD
=>ΔBCD cân tại B
a)Xét tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\) (ĐL Pytago)
\(5^2=3^2+AC^2\)
25=9+\(AC^2\)
25-9=\(AC^2\)
\(AC^2\)=16
Vậy...
b)góc BAC=góc DAC(2 góc này ở vị trì kề bù)
Xét tam giác BAC và tam giác DAC có:
BC=AD(gt)
góc BAC=góc DAC(cmt =90độ )
AC cạnh chung
\(\Rightarrow\Delta ABC=\Delta ADC\)(2 cgv)
\(\Rightarrow BC=DC\)(..)(1)
và góc B= góc D(...)(2)
Từ (1) và(2)có tam giác BCD cân tại C