giải pt sau
(x^2+7x)^2-2(x^2+7x)-24=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 + 7x)2 - 2(x2 + 7x) - 24 = 0
<=> (x2 + 7x)(x2 + 7x - 2) - 24 = 0 (1)
Đặt t = x2 + 7x - 1 = \(=\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\)
(1) trở thành (t + 1)(t - 1) - 24 = 0
<=> t2 - 1 - 24 = 0
<=> t2 - 25 = 0
<=> t2 = 25
<=> t = 5 hoặc t = -5
+) t =\(\left(x+\frac{7}{2}\right)^2-\frac{53}{4}\) = 5
\(\Leftrightarrow\left(x+\frac{7}{2}\right)^2=\frac{73}{4}\)
\(\Leftrightarrow x=\frac{-7+\sqrt{73}}{2};x=\frac{-7-\sqrt{73}}{2}\)
+) t = \(\left(x+\frac{7}{2}\right)^2-\frac{53}{4}=-5\)
\(\Leftrightarrow\left(x+\frac{7}{2}\right)^2=\frac{33}{4}\)
\(\Leftrightarrow x=\frac{-7+\sqrt{33}}{2};x=\frac{-7-\sqrt{33}}{2}\)
Vậy ...
3)
\(x^3-7x+6=0\)
\(\Leftrightarrow x^3+3x^2-3x^2-9x+2x+6=0\)
\(\Leftrightarrow\left(x^3+3x^2\right)-\left(3x^2+9x\right)+\left(2x+6\right)=0\)
\(\Leftrightarrow x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)
4) \(\left(2x+1\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Leftrightarrow3x\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy ................
1.a)|−7x|=3x+16
Vì |-7x| ≥ 0 nên 3x+16 ≥ 0 ⇔ x ≥ \(\dfrac{-16}{3}\) (*)
Với đk (*), ta có: |-7x|=3x+16
\(\left[\begin{array}{} -7x=3x+16\\ -7x=-3x-16 \end{array} \right.\) ⇔ \(\left[\begin{array}{} -7x-3x=16\\ -7x+3x=-16 \end{array} \right.\)
⇔ \(\left[\begin{array}{} x=-1,6 (t/m)\\ x= 4 (t/m) \end{array} \right.\)
b) \(\dfrac{x-1}{x+2}\) - \(\dfrac{x}{x-2}\) = \(\dfrac{5x-8}{x^2-4}\)
⇔ \(\dfrac{(x-1)(x-2)}{x^2-4}\) - \(\dfrac{x(x+2)}{x^2-4}\) = \(\dfrac{5x-8}{x^2-4}\)
⇒ x2 - 2x - x + 2 - x2 - 2x = 5x - 8
⇔ -5x - 5x = -8 - 2
⇔ -10x = -10
⇔ x=1
2.7x+5 < 3x−11
⇔ 7x - 3x < -11 - 5
⇔ 4x < -16
⇔ x < -4
bạn tự biểu diễn trên trục số nha !
<=> (x+1)(x+2)(x+3)(x+4) = 24
<=> (x+1)(x+4)(x+2)(x+3) = 24
<=> (x^2 + 5x +4)(x^2 + 5x + 6) = 24
Đặt x^2 + 5x +4 =t
=> x^2 + 5x +6= t+2
=> t(t+2)=24
<=> t^2 + 2t -24 =0
<=> (t+6)(t-4)=0
<=> t=-6 hoặc t=4
Ở đây thay vô rồi giải thôi, không biết đúng không
a)Ta có \(\left(2x+1\right)\left(x^2+2\right)=0\)<=>
2x+1=0<=>x=\(-\frac{1}{2}\)
hoặc \(x^2+2=0\)<=>\(x^2=-2\)(Vô lí)
Vậy tập nghiệm của pt S=(\(-\frac{1}{2}\))
b)\(\left(x^2+4\right)\left(7x-3\right)=0\)
<=>\(\left[{}\begin{matrix}x^2+4=0\\7x-3=0\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x^2=-4\\x=\frac{3}{7}\end{matrix}\right.\)
\(x^2=-4\) vô lí
Vậy ..........
c)\(\left(x^2+x+1\right)\left(6-2x\right)=0\)
<=>\(\left[{}\begin{matrix}x^2+x+1=0\\6-2x=0\end{matrix}\right.\)
Vì \(x^2+x+1>0\)(dễ dàng c/m)
=>6-2x=0=>x=3
Vậy...
d)\(\left(8x-4\right)\left(x^2+2x+2\right)=0\)
<=>8x-4=0,x=\(\frac{1}{2}\)
hoặc \(x^2+2x+2=0\)(vô lí)
Vậy .....
a)\(\left\{{}\begin{matrix}3x-2y=3\\2x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=5\\3x-2y=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\3-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
b)\(x^2+7x+12=0\)
\(\Leftrightarrow x^2+3x+4x+12=0\)( chị nghĩ + 12 đúng hơn á )
\(\Leftrightarrow x\left(x+3\right)+4\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-3\\x=-4\end{matrix}\right.\)