Tìm chữ số tận cùng của tổng sau: 4961 + 232005 - 191997
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta nhận thấy một số có tận cùng là \(x\) thì khi lũy thừa lên mũ \(4k+1\left(k\inℕ\right)\) thì số nhận được cũng sẽ có tận cùng là \(x\). (*)
Thật vậy, giả sử \(N=\overline{a_0a_1a_2...a_n}\). Khi đó \(N^{4k+1}=\left(\overline{a_0a_1a_2...a_n}\right)^{4k+1}\) \(=\left(\overline{a_0a_1a_2...a_{n-1}0}+a_n\right)^{4k+1}\) \(=a_n^{4k+1}\) nên ta chỉ cần xét số dư của các số từ 0 đến 9 lũy thừa với số mũ \(4k+1\).
Dễ nhận thấy nếu \(a_n\in\left\{0,1,5,6\right\}\) thì \(a_n^{4k+1}\) sẽ có chữ số tận cùng là \(a_n\).
Nếu \(a_n\in\left\{3,7,9\right\}\) thì để ý rằng \(3^4=9^2=81;7^4=2401\) đều có tận cùng là 1 nên hiển nhiên \(a_n^{4k}=\left(a_n^4\right)^k\) có tận cùng là 1. Do đó nếu nhân thêm \(a_n\) thì \(a_n^{4k+1}\) có chữ số tận cùng là \(a_n\).
Nếu \(a_n\in\left\{2,4,8\right\}\) thì do \(2^4=16;4^4=256;8^4=4096\) đều có chữ số tận cùng là 6 \(\Rightarrow a_n^{4k}\) có chữ số tận cùng là 6. Khi nhân thêm \(a_n\) vào thì bộ \(\left(a_n;a_n^{4k+1}\right)\) sẽ là \(\left(2;2\right);\left(4;4\right);\left(8;8\right)\).
Vậy (*) đã được chứng minh.
\(\Rightarrow\) S có chữ số tận cùng là \(2+3+4+...+4\) (tới đây bạn chỉ cần đếm xem có bao nhiêu trong mỗi chữ số từ 0 đến 9 xuất hiện trong tổng trên là xong nhé)
\(a_n^{4k}\)
Ta ra ngọn thành :
1 + 2 + 3 + 4 + 5 +......+2016
Dãy số trên có số số hạng là :
( 201 6 - 1 ) :1 + 1 = 2016 ( số )
Tổng dãy trên là :
( 2016 + 1 ) x 2016 : 2 = 2 033 136
Vậy 3 chữ số tận cùng là 136
~~ tk mk nha ~~
Ai tk mk mk tk lại ~~
Kb vs mk ik m.n ~~ n_n
Ta thấy
- Số thứ nhất có một chữ số 4
- Số thứ hai có hai chữ số 4
- Số thứ ba có ba chữ số 4
- Tương tự : 4444....44( 2000 chữ số bốn) => là số thứ 2000
đáp án tổng trên là........abcd
- d= 4*2000=.....0
- c=4*1999=.........6( nhớ 3)
- b= 4*1998=........2 cộng vói nhớ 3 trên =5(nhớ 3)
- a=4*1997=........8 công với nhớ 3 trên =1
=> abcd=1560
vì chữ số cuối cùng của dãy là 10 nên chữ số tận cùng của tổng là 0
Đ/S :0
\(4^{961}+23^{2005}-19^{1997}\)
\(=4^{960}.4+23^{2004}.23-19^{1996}.19\)
\(=\left(4^2\right)^{480}.4+\left(23^4\right)^{501}.23-\left(19^2\right)^{998}.19\)
\(=\overline{\left(...6\right)}^{480}.4+\overline{\left(...1\right)}^{501}.23-\overline{\left(...1\right)}^{998}.19\)
\(=\overline{\left(...6\right)}.4+\overline{\left(...1\right)}.23-\overline{\left(...1\right)}.19\)
\(=\overline{\left(...4\right)}+\overline{\left(...3\right)}-\overline{\left(...9\right)}\)
\(=\overline{\left(...7\right)}-\overline{\left(...9\right)}\)
\(=\overline{...8}\)
8 đó bạn