K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2017

pt trên thì có nghiệm là 2/3; 
pt dưới có chuyễn hóa thành: 
9x^2-6x=0 
có thêm nghiệm nữa bằng 0; 
cho thêm ví dụ nữa nè: 
có thằng phân tích -20=-20 ra (5-9/2)^2=(4-9/2)^2 
thực chất kết quả của nó là 0,1^2=(-0,1)^2

k mk nhé thanks bạn nhìu nhìu

16 tháng 1 2017

k mk nhé mk nhanh nhất

19 tháng 9 2018

- Bạn Nga đã nhận xét đúng vì hai hệ phương trình cùng vô nghiệm có nghĩa là chúng cùng có tập nghiệm bằng ∅.

- Bạn Phương nhận xét sai.

Ví dụ: Xét hai hệ Giải bài 6 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 và Giải bài 6 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9

Hệ Giải bài 6 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có vô số nghiệm. Tập nghiệm của (I) được biểu diễn bởi đường thẳng x – y = 0.

Hệ Giải bài 6 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có vô số nghiệm. Tập nghiệm của (II) được biểu diễn bởi đường thẳng x + y = 0.

Nhận thấy, tập nghiệm của hai hệ (I) và hệ (II) được biểu diễn bởi hai đường thẳng khác nhau nên hai hệ không tương đương.

8 tháng 2 2017

- Bạn Nga đã nhận xét đúng vì hai hệ phương trình cùng vô nghiệm có nghĩa là chúng cùng có tập nghiệm bằng ∅.

- Bạn Phương nhận xét sai.

Ví dụ: Xét hai hệ Giải bài 6 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 và Giải bài 6 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9

Hệ Giải bài 6 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có vô số nghiệm. Tập nghiệm của (I) được biểu diễn bởi đường thẳng x – y = 0.

Hệ Giải bài 6 trang 11 SGK Toán 9 Tập 2 | Giải toán lớp 9 có vô số nghiệm. Tập nghiệm của (II) được biểu diễn bởi đường thẳng x + y = 0.

Nhận thấy, tập nghiệm của hai hệ (I) và hệ (II) được biểu diễn bởi hai đường thẳng khác nhau nên hai hệ không tương đương.

Kiến thức áp dụng

Hai hệ phương trình được gọi là tương đương nếu chúng có cùng tập nghiệm.

20 tháng 5 2020

Hai phương trình vô nghiệm có tương đương.

Hai phương trình có vô số nghiệm không tương đương.

Mik đoán vậy :)

#Tuyên#

3 tháng 4 2019

a) Hệ đã cho vô nghiệm bởi vì mỗi nghiệm của hệ là nghiệm chung của hai phương trình, một phương trình vô nghiệm thì hệ không có nghiệm chung.

b) Hệ đã cho có vô số nghiệm.

16 tháng 2 2018

Hai bất phương trình trong VD 1 không tương đương do chúng không có cùng tập nghiệm.

12 tháng 3 2019

Hệ đã cho có vô số nghiệm

30 tháng 4 2018

Ví dụ: phương trình (1) x - 1 = 3 có tập nghiệm S1 = {4}.

Nhân hai vế của phương trình (1) với x, ta được phương trình:

(x - 1)x = 3x (2)

⇔ (x - 1)x - 3x = 0

⇔ x(x - 4) = 0

Phương trình (2) có tập nghiệm là S2 = {0, 4}.

Vì S1 ≠ S2 nên hai phương trình (1) và (2) không tương đương.

27 tháng 3 2019

Hệ đã cho vô nghiệm bởi vì mỗi nghiệm của hệ là nghiệm chung của hai phương trình, một phương trình vô nghiệm thì hệ không có nghiệm chung.

17 tháng 1 2022

a) \(\left\{{}\begin{matrix}mx+y=1.\\x+my=m+1.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1-mx.\\x+m\left(1-mx\right)=m+1.\left(1\right)\end{matrix}\right.\) 

Xét (1): \(x+m\left(1-mx\right)=m+1.\Leftrightarrow x+m-m^2x-m-1=0.\Leftrightarrow\left(1-m^2\right)x-1=0.\left(2\right)\)

Để hệ phương trình có nghiệm duy nhất. \(\Leftrightarrow\) (2) có nghiệm duy nhất. 

\(\Leftrightarrow1-m^2\ne0.\Leftrightarrow m^2\ne1.\Leftrightarrow m\ne\pm1.\)

b) Để hệ phương trình có vô số nghiệm. \(\Leftrightarrow\) (2) có vô số nghiệm.

\(\Leftrightarrow\left\{{}\begin{matrix}1-m^2=0.\\-1=0.\end{matrix}\right.\) (vô lý).

\(\Rightarrow m\in\phi\).

c) Để hệ phương trình có vô nghiệm. \(\Leftrightarrow\) (2) có vô nghiệm.

\(\Leftrightarrow\left\{{}\begin{matrix}1-m^2=0.\\-1\ne0.\end{matrix}\right.\)\(\Leftrightarrow1-m^2=0.\Leftrightarrow m^2=1.\Leftrightarrow m=\pm1.\)