Cho abc khác 0 và\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}.\).Tính giá trị của A= [(a+b)(b+c)(c+a)]:abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
- TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)
- TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
\(\frac{b+c}{a}+1=\frac{a-c}{b}+1=\frac{a-b}{c}+1\Rightarrow\frac{b+c}{a}=\frac{a-c}{b}=\frac{a-b}{c}\)
\(\Rightarrow a=b+c\), \(b=a-c\),\(c=a-b\)\(\Rightarrow A=-1\)
Áp dụng tính chất dãy tủ số bằng nhau, ta có:
\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1
=>\(\frac{a+b-c}{c}\) = 1
a+b-c = c
a+b =2c
=>\(\frac{a-b+c}{b}\) = 1
a-b+c = c
a+c =2b
=>\(\frac{-a+b+c}{a}\) = 1
-a+b+c = a
b+c =2a
Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:
M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}\)(1)
+) Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
Thay vào biểu thức M ta được: \(M=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)
+) Nếu \(a+b+c\ne0\)
\(\Rightarrow\)Giá trị của (1) \(=1\)\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=2c\\c+a=2b\\b+c=2a\end{cases}}\)
Thay vào biểu thức M ta được: \(M=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)
Vậy \(M=-1\)hoặc \(M=8\)
TH1: Nếu \(a+b+c=0\) ( \(a,b,c\ne0\))
\(\Rightarrow a+b=-c\); \(b+c=-a\); \(c+a=-b\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=\frac{-abc}{abc}=-1\)
TH2: Nếu \(a+b+c\ne0\)( \(a,b,c\ne0\))
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
\(=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}\)
\(=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow a+b-c=c\)\(\Rightarrow a+b=2c\)
\(a-b+c=b\)\(\Rightarrow a+c=2b\)
\(-a+b+c=a\)\(\Rightarrow b+c=2a\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8abc}{abc}=8\)
Vậy \(M=-1\)hoặc \(M=8\)
Với \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\) và ĐK : \(a,b,c\ne0\), ta có :
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b-a+c}{a}\). Đặt \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b-a+c}{a}=x\), mà \(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{b-a+c}{a}=\frac{a+b-c+a-b+c+b-a+c}{c+b+a}\), có tiếp : \(=\frac{a-a+a+b-b+b+c-c+c}{c+b+a}=\frac{a+b+c}{c+b+a}=1\). Nhưng vì ĐK :\(=\frac{-a+b+c}{a}\), nên a + b - c = a - b + c = a - c + b = x ( coi x = a = b = c )
Tức là a,b,c = \(Stn\inℕ^∗\)
\(M=\frac{2x2x2x}{abc}=\frac{x^38}{abc}=\frac{x512}{abc}\)
Biểu thức xảy ra khi a = b = c = x
Từ \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)
\(\Rightarrow\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)