Tính tổng:
A = 1/ 1.2 + 1/ 2.3 + ... + 1/ 999.1000
B = 1/ 1.6 + 1/ 6.11 + .... + 1/ 496.501
C = 1/ 1.2.3 + 1/ 2.3.4 + ..... + 1/ 998.999.1000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\frac{1}{1.2}-\frac{1}{1.2.3}+\frac{1}{2.3}-\frac{1}{2.3.4}+....+\frac{1}{99.100}-\frac{1}{99.100.101}\)
\(=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\right)\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{99.100.101}\)
\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{101-99}{99.100.101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{99.100}-\frac{1}{100.101}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{100.101}\right)=\frac{5049}{20200}\)
Suy ra \(E=A-B=\frac{99}{100}-\frac{5049}{20200}=\frac{14949}{20200}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{998.999.1000}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{998.999.1000}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{998.999}-\frac{1}{999.1000}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{999.1000}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{999000}\right)\)
\(=\frac{1}{2}.\left(\frac{499500}{999000}-\frac{1}{999000}\right)\)
\(=\frac{1}{2}.\frac{499499}{999000}\)
\(=\frac{499499}{1998000}\)
Bài 1:
\(A=1.2+2.3+3.4+...+n.\left(n+1\right)\)
\(3A=1.2.3+2.3.3+3.4.3+...+n.\left(n+1\right).3\)
\(=1.2\left(3-0\right)+2.3\left(4-1\right)+...+n.\left(n+1\right).\left[\left(n+2\right)-\left(n-1\right)\right]\)
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
\(=n.\left(n+1\right).\left(n+2\right)\)
\(\Leftrightarrow A=\frac{\left[n.\left(n+1\right).\left(n+2\right)\right]}{3}\)
3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>A=[n.(n+1).(n+2)] /3
a.
$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$
$=1-\frac{1}{1000}=\frac{999}{1000}$
b.
$5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{495.500}$
$=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{500-495}{495.500}$
$=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{495}-\frac{1}{500}$
$=1-\frac{1}{500}=\frac{499}{500}$
$\Rightarrow B=\frac{499}{500}: 5= \frac{499}{2500}$
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
dựa vào nhé
A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
=>3A=1.2.3+2.3.3+3.4.3+n.(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+....+n.(n+1)(n+2)-(n-1).n.(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1).(n+2)
=>A=n.(n+1)(n+2)/3
B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
=>4B=1.2.3.4+2.3.4.4+....+(n-1)n(n+1).4
=1.2.3.(4-0)+2.3.4.(5-1)+...+(n-1)n(n+1)[(n+2)-(n-2)]
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
=(n-1)n(n+1)(n+2)-0.1.2.3
=(n-1)n(n+1)(n+2)
=>B=(n-1)n(n+1)(n+2)/4
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)
\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)
\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)
Vậy \(A=\frac{2019}{505}.\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)
\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)
Vậy \(B=\frac{4949}{19800}.\)
\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)
\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)
\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)
Đến đây tự tính
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
Số hơi bị dữ nên tính nốt nhé
A=999/1000
B= ...........
C=..................