Cho một hình ngũ giác có ba đường thẳng d1,d2,d3 cắt nhau tại 3 điểm A,B,C thuộc miền trong ngũ giác sao cho 1 đường thẳng chia ngũ giác thành 2 phần co diện tích bằng nhau. Chứng minh rằng: S của ABC<1/4 S của ngũ giác đã cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
Ba đường thẳng d1, d2, d3 cắt nhau tại ba điểm A, B, C chia ngũ giác thành bảy phần với các diện tích được ký hiệu như trên hình
Ta thấy:
S3 + S2 + S7 = \(\dfrac{1}{2}\)S
= S1 + S2 + S7 + S6
S3 = S1 + S6 (1)
Ta cũng có:
\(\dfrac{1}{2}\)S = S1 + S2 + S3 + S4 (2)
Thay (1) vào (2) ta được:
\(\dfrac{1}{2}\)S = 2S1 + S2 + S3 + S4 + S6 > 2S1
Tức là S1 < \(\dfrac{1}{4}\)S
999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999
a: Tọa độ A là:
\(\left\{{}\begin{matrix}x+2=-x-2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x=-4\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2+2=0\end{matrix}\right.\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x+2=-2x+2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x=0\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+2=2\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}-x-2=-2x+2\\y=-x-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=4\\y=-4-2=-6\end{matrix}\right.\)
Vậy: A(-2;0); B(0;2); C(4;-6)
b: \(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
\(AC=\sqrt{\left(4+2\right)^2+\left(-6-0\right)^2}=6\sqrt{2}\)
\(BC=\sqrt{\left(4-0\right)^2+\left(-6-2\right)^2}=\sqrt{4^2+8^2}=4\sqrt{5}\)
Xét ΔABC có \(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=0\)
=>\(\widehat{BAC}=90^0\)
=>ΔABC vuông tại A
=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\sqrt{2}\cdot6\sqrt{2}=12\)
b/ Tọa độ điểm A
\(\hept{\begin{cases}y=-x+1\\y=x+1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
=> A(0, 1)
Tọa độ điểm B
\(\hept{\begin{cases}y=-x+1\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
=> B(2, - 1)
Tọa độ điểm C
\(\hept{\begin{cases}y=x+1\\y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}\)
=> C(-2, -1)
c/ Ta có vecto AB = (2, - 2) => AB = \(2\sqrt{2}\)
Vecto BC = (- 4, 0) => BC = 4
Vecto CA = (- 2, - 2) => CA = \(2\sqrt{2}\)
Từ đây ta có CA = AB
BC2 - AB2 - CA2 = 16 - 8 - 8 = 0
=> ∆ABC vuông cân tại A