CHO \(ABC\ne0\)VÀ \(\frac{A+B-C}{C}=\frac{B+C-A}{A}=\frac{C+A-B}{B}\)
TÍNH GIÁ TRỊ CỦA \(A=\left|\left(A+B\right)\left(B+C\right)\left(C+A\right)\right|:ABC\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{b+c}{a}+1=\frac{a-c}{b}+1=\frac{a-b}{c}+1\Rightarrow\frac{b+c}{a}=\frac{a-c}{b}=\frac{a-b}{c}\)
\(\Rightarrow a=b+c\), \(b=a-c\),\(c=a-b\)\(\Rightarrow A=-1\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
\(a+b+c=0\Leftrightarrow a=-b-c\Leftrightarrow a^2=b^2+c^2+2bc\Leftrightarrow a^2-b^2-c^2=2bc\)
Tương tự : \(b^2-a^2-c^2=2ac\) ; \(c^2-a^2-b^2=2ab\)
Ta có : \(T=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}=\frac{a^2}{2bc}+\frac{b^2}{2ca}+\frac{c^2}{2ab}\)
\(=\frac{1}{2abc}\left(a^3+b^3+c^3\right)\)(1)
Ta sẽ chứng minh nếu a + b + c = 0 thì \(a^3+b^3+c^3=3abc\)
Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left(a^2+b^2+2ab-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
= 0
=> \(a^3+b^3+c^3=3abc\) thay vào (1) được :
\(T=\frac{a^3+b^3+c^3}{2abc}=\frac{3abc}{2abc}=\frac{3}{2}\)