Cho tứ giác ABCD: \(\widehat{A}+\widehat{C}=180^o\) Kéo dài AB cắt CD tại M, kéo dài AD cắt BC tại N
Chứng minh rằng: Phân giác của \(\widehat{AMD}\)và phân giác của \(\widehat{BND}\)vuông góc với nhau./
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
MN
27 tháng 7 2020
Bạn vào thống kê hỏi đáp của mình để xem lời giải nhé !
\(\widehat{EIF}=\frac{\widehat{A}+\widehat{C}}{2}=\frac{180^o}{2}=90^o\) (ĐPCM)
KK
30 tháng 8 2021
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân