chứng minh rằng 2003 mũ 2007 + 2007 mu 2003 chia het cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2007^{2005}-2003^{2003}=\left(...7\right)^{4.501}.\left(...7\right)^1-\left(...3\right)^{4.500}.\left(...3\right)^3=\left(...1\right).\left(...7\right)-\left(...1\right).\left(...7\right)\)\(=\left(...7\right)-\left(...7\right)=...0\).
Số này có chữ số tận cùng là 0 nên chia hết cho 2 hay có dạng 2k (k \(\in\) Z)
Do đó \(H=0,5.2k=\frac{1}{2}.2k=\frac{2k}{2}=k\) là số nguyên
Ta có \(0.5\left(2007^{2005}-2003^{2003}\right)\)= \(\frac{2007^{2005}-2003^{2003}}{2}\)
Vì \(2007^{2005}\)lẻ và \(2003^{2003}\)lẻ
\(\Rightarrow2007^{2005}-2003^{2003}\)chẵn
\(\Rightarrow2007^{2005}-2003^{2003}⋮2\)
\(\Rightarrow0.5\left(2007^{2005}-2003^{2003}\right)\)là số nguyên (đpcm)
Phải chứng minh 20072005 - 20032003 có tận cùng là 0
Ta có:
\(2007^{2005}-2003^{2003}=2007^{2004}.2007-2003^{2000}.2003^3\)
\(=\left(2007^4\right)^{501}.2007-\left(2003^4\right)^{500}.\left(...7\right)\)
\(=\left(...1\right)^{501}.2007-\left(...1\right)^{500}.\left(...7\right)\)
\(=\left(...1\right).2007-\left(...1\right).\left(...7\right)\)
\(=\left(...7\right)-\left(...7\right)\)
\(=\left(...0\right)\)
=> 0,5.(20072005 - 20032003) là số nguyên
=> đpcm
2007^2005 là số lẻ
2003^2003 là số lẻ
=>2007^2005-2003^2003 là số chẵn chia hết cho 2
=>0,5(2007^2005-2003^2003)=(2007^2005-2003^2003) /2 là so nguyen dpcm
Ta có: 2017+20172003=2017+(..3)=(...0) (chia hết cho 10)
Do đó:2017+20172003 chia hết cho 10
Ta có: 20032007 + 20072003
= 20032004.20033 + 20072000.20073
= (20034)501.(...7) + (20074)500.(...3)
= (...1)501.(...7) + (...1)500.(...3)
= (...1).(...7) + (...1).(...3)
= (...7) + (...3)
= ...0
Vì \(\overline{...0}⋮10\) nên \(2003^{2007}+2007^{2003}⋮10\)
Vậy...