tim x biet,(1+5+5^2+...+5^2011)|x-1|=5^2012-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-3}{2013}+\frac{x-4}{2012}=\frac{x-5}{2011}+\frac{x-6}{2010}\)
\(\Leftrightarrow\frac{x-3-2013}{2013}+\frac{x-2-2012}{2012}=\frac{x-5-2011}{2011}+\frac{x-6-2010}{2010}\)(mỗi vế trừ đi 2)
\(\Leftrightarrow\frac{x-2016}{2013}+\frac{x-2016}{2012}-\frac{x-2016}{2011}-\frac{x-2016}{2010}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Mà \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)
\(\Rightarrow x-2016=0\Leftrightarrow x=2016\)
Cộng mỗi vế cho 1
Ta có: \(\frac{x-3-2013}{2013}+\frac{x-4-2012}{2012}=\frac{x-5-2011}{2011}+\frac{x-6-2010}{2010}\)
\(=>\left(\frac{x-2016}{2013}+\frac{x-2016}{2012}\right)-\left(\frac{x-2016}{2011}+\frac{x-2016}{2010}\right)=0\)
\(=>\left(x-2016\right).\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)\)
Mà \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\ne0\)
\(=>x-2016=0\\ =>x=2016\)
Đặt A = (1 + 5 + 52 + ... + 52011)
Ta có : 5A = 5.(1 + 5 + 52 + ... + 52011)
=> 5A = 5 + 52 + 53 + ... + 52012
=> 4A = 5A - A = (5 + 52 + 53 + ... + 52012) - (1 + 5 + 52 + ... + 52011)
=> 4A = 52012 - 1
=> A = \(\frac{5^{2012}-1}{4}\)
\(\Rightarrow\frac{5^{2012}-1}{4}\cdot\left|x-1\right|=5^{2012}-1\)
\(\Rightarrow\left|x-1\right|=5^{2012}-1\div\left(\frac{5^{2012}-1}{4}\right)\)
\(\Rightarrow\left|x-1\right|=\left(5^{2012}-1\right)\cdot\frac{4}{5^{2012}-1}\)
\(\Rightarrow\left|x-1\right|=4\)
=> x - 1 = 4 hoặc x - 1 = -4
=> x = 4 + 1 hoặc x = -4 + 1
=> x = 5 hoặc x = -3
Vậy x = 5 hoặc x = -3
Gọi A = 1+5+5^2+...+5^2011
=> 5A = 5+5^2+5^3 +...+ 5^2012
=> 5A - A = 5^2012 - 1
Thay A vào ( 1+5+5^2+...+5^2011) . |x-1| = 5^2012-1
( 5^2012-1).|x-1| = 5^2012-1
|x-1| = (5^2012-1) : (5^2012-1)
|x-1| = 1
TH1: x- 1= 1
x = 2 (TM)
TH2: x - 1= - 1
x= 0 (TM)
KL: x = 2 hoặc x = 0
Đặt 1 + 5 + 5^2 + ... + 5^2012 = A
Ta có : A = 1 + 5 + 5^2 + ... + 5^2012
5A = 5 + 5^2 + ... + 5^2012
5A - A = 4A = ( 5 + 5^2 + ... + 5^2013 ) - ( 1 + 5 + 562 + ... + 5^2012 )
4A = 5^2012 - 1
A = ( 5^2012 - 1 ) / 4
\(\Rightarrow\) ( 5^2012 - 1 ) / 4 | x - 1 | = ( 5^2012 - 1 )
\(\Rightarrow\) | x - 1 | = ( 5^2012 - 1 ) : mở ngoặc vuông rồi ( 5^2012 - 1 ) / 4 đóng ngoặc vuông lại ( sorry, mình không biết ngoặc vuông đâu )
\(\Rightarrow\) | x - 1 | = 4
\(\Rightarrow\)hoặc | x - 1 | = 4 \(\Rightarrow\)x = 3
hoặc | x - 1 | = -4 \(\Rightarrow\)x = -3
Vậy x = 3 hoặc -3
K MÌNH NHÉ
( 1 + 5 + 5^2 + ....+ 5^2011 ) I x - 1 I = ( 5^2012 - 1 ) (1)
Đặt A= 1 + 5 + 5^2 + ....+ 5^2011
=>5A= 5 + 5^2 + ....+ 5^2011 + 5^2012
=>5A-A = ( 5 + 5^2 + ....+ 5^2011 + 5^2012) - ( 1 + 5 + 5^2 + ....+ 5^2011) = 5^2012 - 1
=> 4A = 5^2012 - 1 => A = (5^2012 - 1)/4 (2)
(1)(2) => (5^2012 -1)/4.I x - 1 I = 5^2012 -1 => (5^2012 - 1)I x - 1 I=4(5^2012 - 1) => I x - 1 I=4
\(\Rightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
Đặt \(\left(1+5+5^2+5^3+...+5^{2010}+5^{2011}\right)\) là A
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{2011}+5^{2012}\)
\(\Rightarrow5A-A=5+5^2+5^3+5^4+...+5^{2011}+5^{2012}-1-5-5^2-5^3-...-5^{2010}-5^{2011}\)
\(\Rightarrow4A=5^{2012}-1\)
\(\Rightarrow A=\frac{1}{4}\left(5^{2012}-1\right)\)
Thay A vào, ta có:
\(\frac{1}{4}\left(5^{2012}-1\right)\left(x-1\right)=5^{2012}-1\)
\(\frac{1}{4}\left(x-1\right)=1\)
\(x-1=4\)
\(x=3\)
`x xx 2/3 xx 3/4 xx 4/5 xx ... xx 2010/2011 = 2/2012`
`<=> x/2011 = 1/1006`
`=> x = 2011/1006`
đầu tiên ta tính
\(A=1+5+5^2+..+5^{2011}\)
\(\Rightarrow5A=5+5^2+..+5^{2012}\)
lấy hiệu hai đẳng thức trên ta có \(4A=5^{2012}-1\Leftrightarrow A=\frac{5^{2012}-1}{4}\Rightarrow x-1=4\Rightarrow x=5\)