2.3+2.3+2.3+2.3+2.3+2.3+2.3=1.4+15.6+1.4+0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.4 + 2.5 + 3.6 + ..... + 99.102
= 1.(2 + 2) + 2.(3 + 2) + 3.(4 + 2) + ..... + 99.(100 + 2)
= 1.2 + 2 + 2.3 + 2.2 + 3.4 + 2.3 + .... + 99.100 + 2.99
= (1.2 + 2.3 + 3.4 + .... + 99.100) + (1.2 + 2.2 + 3.2 + .... + 2.99)
= 333300 + 2[(99.100)/2]
= 343200
\(B=1.4+2.5+3.6+...+99.102\)
\(=1.\left(2+2\right)+2.\left(2+3\right)+3.\left(2+4\right)+...+99.\left(2+100\right)\)
\(=1.2+2.1+2.3+2.2+3.4+2.3+...+99.100+2.99\)
\(=\left(1.2+2.3+...+99.100\right)+\left(2.1+2.2+2.3+...+2.99\right)\)
\(=333300+2.\left(1+2+3+...+99\right)\)
\(=333300+2.\left(\frac{99.100}{2}\right)\)
\(=333300+99.100=333300+9900=343200\)
kb với mình nha
B-A=1.(4-2)+2.(5-3)+...+99.(102-100)
B-A=2.(1+2+...+99)
B-A=\(\frac{\left(99+1\right).99}{2}\)
B-A=4950
B=333300+4950=338250
Đặt A = 1.2 + 2.3 + 3.4 + .... + 199.200
⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 199.200.3
⇒ 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 199.200.( 201 - 198 )
⇒ 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 199.200.201 - 198.199.200
⇒ 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 198.199.200 - 198.199.200 ) + 199.200.201
⇒ 3A = 199.200.201
⇒ 3A = \(\frac{199.200.201}{3}\)
Ta có : \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\frac{1}{2}+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+...+\left(-\frac{1}{99}+\frac{1}{99}\right)-\frac{1}{100}\)
\(A=\frac{1}{2}+0+0+..+0-\frac{1}{100}\)
\(A=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+..+\frac{5}{100.103}\)
\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
\(B=1+\left(-\frac{1}{4}+\frac{1}{4}\right)+\left(-\frac{1}{7}+\frac{1}{7}\right)+...+\left(-\frac{1}{100}+\frac{1}{100}\right)-\frac{1}{103}\)
\(B=1+0+0+...+0-\frac{1}{103}\)
\(B=1-\frac{1}{103}=\frac{102}{103}\)
So sánh : A < B vì 49/100 < 102/103 (49.103 < 102 . 100)