chứng minh (x+y+z)^2-x^2-y^2-z^2=2(xy+yz+xz)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Lời giải:
CM vế thứ nhất:
Xét hiệu: $x^2+y^2+z^2-(xy+yz+xz)=\frac{2x^2+2y^2+2z^2-2xy-2yz-2xz}{2}=\frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}\geq 0$ với mọi $x,y,z$ là độ dài 3 cạnh tam giác.
$\Rightarrow x^2+y^2+z^2\geq xy+yz+xz$ (đpcm)
CM vế thứ 2:
Áp dụng BĐT tam giác ta có:
$x< y+z\Rightarrow x^2< x(y+z)$
$y< x+z\Rightarrow y^2< y(x+z)$
$z< x+y\Rightarrow z^2< z(x+y)$
Cộng theo vế 3 điều trên suy ra $x^2+y^2+z^2< 2(xy+yz+xz)$ (đpcm)
Vậy.........
x2=yz => \(\frac{x}{y}=\frac{z}{x}\)
\(z^2=xy\Rightarrow\frac{z}{x}=\frac{y}{z}\)
\(\Rightarrow\frac{x}{y}=\frac{z}{x}=\frac{y}{z}\)
áp dụng ... ta có
\(\frac{x}{y}=\frac{z}{x}=\frac{y}{z}=\frac{x+z+y}{y+x+z}=1\)
\(\frac{x}{y}=1\Rightarrow x=y\)
\(\frac{z}{x}=1\Rightarrow z=x\)
=>x=y=z
Ta có x2=yz nên x/y=z/x(1)
y2=xz nên x/y=y/z(2)
z2=xy nên z/x=y/z(3)
Từ 1,2,3 suy ra x/y=z/x=y/z(4)
áp dụng t/c dãy tỉ số bằng nhau vào 4 có
x/y=z/x=y/z=x+y+z/x+y+z
vì x, y,z khác 0 nên x+y+z Khác 0
suy ra x+y+z/z+x+y=1
suy ra x/y=z/x=y/z=1
suy ra x=y; x=z; y=z
C2 :
Từ x2=yz⇒xz=yx(1)
Từ y2=xz⇒yx=zy(2)
Từ z2=xy⇒zy=xz(3)
Từ (1) , (2) và (3) ⇒xz=yx=zy
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
xz=yx=zy=x+y+zz+x+y=1
Khi đó : xz=1⇒x=z((
yx=1⇒y=x
zy=1⇒z=y
T
ta có bđt phụ ,,,,,,,, x2+y2+z2 >= xy+yz+zx
thay vào thôi,,,cái bđt dễ cm mà,,,nhân 2 2 vế rồi dùng tương đương
#)Góp ý :
Mời bạn tham khảo :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Mình sẽ gửi link này về chat riêng cho bạn !
Tham khảo qua đây nè :
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%Ân-b%C3%ACnh-thu%E1%BA%ADn-2016-2017
tk cho mk nhé
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(xz\right)^2}{zxy^2\left(x+z\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+zx}+\frac{2\left(xz\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\ge\frac{2\left(yz+xz+xy\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
phá cái Tổng BP ra là kết quả:
chuyển hết số số BP sang VP ghép BP cũng ra kết quả