Cho \(\frac{x}{5y}=\frac{y}{2x+y}=\frac{10-5y}{x}\) với x,y khác 0, y khác 2x. Tính \(\left(\frac{x}{y}\right)^2+\left(x-5y\right)^{2015}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(=\frac{2\left(x+y\right)+5\left(x+y\right)}{2\left(x+y\right)-5\left(x+y\right)}\)
\(=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=\frac{-7}{3}\)
b)\(=\frac{3x\left(x+y\right)}{y}\)
c) \(\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}\)
\(=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
a) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7\left(x+y\right)}{-3\left(x+y\right)}=-\frac{7}{3}.\)
b) \(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}=\frac{3x\left(x+y\right)}{y}=\frac{3x^2+3xy}{y}\)
c) \(\frac{5\left(x-y\right)-3\left(y-x\right)}{10\left(x-y\right)}=\frac{5\left(x-y\right)+3\left(x-y\right)}{10\left(x-y\right)}=\frac{8\left(x-y\right)}{10\left(x-y\right)}=\frac{4}{5}\)
d) \(\frac{3\left(x-y\right)\left(x-z\right)^2}{6\left(x-y\right)\left(x-z\right)}=\frac{x-z}{2}\)
h) \(\frac{3x\left(1-x\right)}{2\left(x-1\right)}=-\frac{3x\left(x-1\right)}{2\left(x-1\right)}=\frac{-3x}{2}\)
j) \(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)
Câu b) bạn xem lại nhé.
Học tốt ^3^
\(\Leftrightarrow\left\{{}\begin{matrix}-2x+5y=-5\\2x+3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=0\\2x+3y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=0\end{matrix}\right.\)
Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
Thay \(x=2k;y=3k\) vào biểu thức A ta được
\(A=\frac{13.\left(2k-2.3k\right)}{2.2k+5.3k}=\frac{13.\left(-4k\right)}{19k}=\frac{-52}{19}\)
Vậy A=\(\frac{-52}{19}\)
b/ ĐKXĐ: ...
\(2x^3-2y^3+5x-5y=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2\right)+5\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x^2+2xy+2y^2+5\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)^2+x^2+y^2+5\right]=0\)
\(\Leftrightarrow x=y\) (ngoặc sau luôn dương)
Thế vào pt dưới:
\(\frac{3x}{x^2+x+1}+\frac{5x}{x^2+3x+1}=2\)
Nhận thấy \(x=0\) ko phải nghiệm, pt tương đương:
\(\frac{3}{x+\frac{1}{x}+1}+\frac{5}{x+\frac{1}{x}+3}=2\)
Đặt \(x+\frac{1}{x}+1=t\)
\(\Rightarrow\frac{3}{t}+\frac{5}{t+2}=2\Leftrightarrow3\left(t+2\right)+5t=2t\left(t+2\right)\)
\(\Leftrightarrow2t^2-4t-6=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}+1=-1\\x+\frac{1}{x}+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+2x+1=0\\x^2-2x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)
a/ ĐKXĐ: ...
\(2x-\frac{1}{y}=2y-\frac{1}{x}\Leftrightarrow\frac{2xy-1}{y}=\frac{2xy-1}{x}\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\2xy-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\xy=\frac{1}{2}\end{matrix}\right.\)
TH1: \(x=y\Rightarrow6x^2=7x^2-8\Rightarrow x^2=8\Rightarrow...\)
TH2: \(xy=\frac{1}{2}\Rightarrow y=\frac{1}{2x}\)
\(\Rightarrow2\left(2x^2+\frac{1}{4x^2}\right)+4\left(x-\frac{1}{2x}\right)=\frac{7}{2}-8\)
\(\Leftrightarrow4\left(x^2+\frac{1}{4x^2}\right)+8\left(x-\frac{1}{2x}\right)+9+4x^2=0\)
Đặt \(x-\frac{1}{2x}=t\Rightarrow x^2+\frac{1}{4x^2}=t^2+1\)
\(\Rightarrow4\left(t^2+1\right)+8t+9+4x^2=0\)
\(\Leftrightarrow4\left(t+1\right)^2+4x^2+9=0\)
Vế trái luôn dương nên pt vô nghiệm