Chứng minh rằng:
94260 - 35137 chia hết cho 5
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau ma khoe.
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
b;
bạn thử từng trường hợp đầu tiên là chia hết cho 2 thì n=2k và 2k+1.
.......................................................................3......n=3k và 3k + 1 và 3k+2
c;
bạn phân tích 2 số ra rồi trừ đi thì nó sẽ chia hết cho 9
d;tương tự b
e;g;tương tự a
b ) B = 5 + 52 + ... + 57 . 58
= ( 5 + 52 ) + ... + ( 57 . 58 )
= 5 . ( 1 + 5 ) + ... + 57 . ( 1 + 5 )
= 5 . 6 + ... + 57 . 6
= 6 . ( 5 + ... + 57 ) \(⋮\)6
a ) 53! - 51!
= 51! . ( 52 . 53 - 1 )
= 51! . 2755
mà 2755 \(⋮\)29 => 51! . 2755
Vậy 53! - 51! \(⋮\)29
n^2+n+1= nx(n+1)+1 vì số chia hết cho 5 thì phải có tận cùng là 0 hoạc 5 nên nx(n+1)+1 không chia hết cho5
x-5y chia hết cho 17
=>10x-50y chia hết cho 17
=>10x+y-51y chia hết cho 17
mà 51y chia hết cho 17
nên 10x+y chia hết cho 17
Ta có:
\(942^{60}=\left(942^4\right)^{15}=\overline{...6}^{15}=\overline{...6}\)
\(351^{37}=\overline{...1}\)
\(\Rightarrow942^{60}-351^{37}=\overline{...6}-\overline{...1}=\overline{...5}⋮5.đpcm\)