cho tam giác ABC có 3 góc nhọn các đường cao AD , BE , CF cắt nhau tại H . CMR :
A) TAM GIÁC FHE ĐỒNG DẠNG VỚI BHC
b) H là giao điểm của các đường phân giác của tam giác DEF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ad ĐỪNG XÓA
Học tiếng anh free vừa học vừa chơi đây
các bạn vào đây đăng kí nhá : https://iostudy.net/ref/165698
a)tg AEB và tg AFC có
-^AEB=^AFC
-^BEA=^FAC
=>tg AEB đồng dạng tg AFC
=>AE/AF=AB/AC
=>AE. AC=AF.AB
b) AE/AF=AB/AC
=>AE/AB= AF/AC
tgAEF và tg ABC có
-^EAF=^BAC
- AE/AB= AF/AC
=>tg AEF đồng dạng tg ABC
c) tg AEB đồng dạng tg AFC
=>^ABE=^ ACF
hay ^FBH=^ECH
tg FHB và tg EHC c ó
-^FBH=^ECH
-^FHB=^EHC
=> tg FHB và tg EHC đồng dạng
=>FH/EH=HB/HC
tg FHE và tg BHC có
- FH/EH=HB/HC
-^FHE=^BHC(2 g óc đối đỉnh)
=> tg FHE và tg BHC đồng dạng
tg ABD và CBF có
-^ADB=^CFB(=90 độ)
-^ABD=^CBF
=> tg ABD và CBF đồng dạng
=>AB/BC=BD/BF
=>BF.AB=BC.BD
Tương tự chứng minh:CE.CA=CD.BC
=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2
k hiểu j lun ák