K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2017

Ta có: 10n + 18n - 1 = (10n- 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n+ 18n - 1 chia hết cho 27 (đpcm)

tk nha bạn

thank you bạn

(^_^)

3 tháng 1 2017

Số dư là: 1 nha bn 

mk nha mk lại 

Cảm ơn bn nhìu Mai Hương Võ

^_^

AH
Akai Haruma
Giáo viên
10 tháng 1 2017

Lời giải:

Đặt $A=10^n+18^n$.

Nếu $n=0$ thì $A$ chia $27$ dư $2$

Nếu $n=1$ thì $A=28$ chia $27$ dư $1$

Nếu $n\geq 2$. Xét các TH sau

TH1: Nếu $n=3k$ ( $k\in\mathbb{N} >1$)

\(10^{3}\equiv 1\pmod {27}\Rightarrow 10^n=(10^3)^k\equiv 1\pmod {27}\)

\(18^n=18^{3k}\equiv (-9)^{3k}\equiv 0\pmod{27}\)

\(\Rightarrow A\equiv 1\pmod{27}\), tức $A$ chia $27$ dư $1$

TH2: $n=3k+1$ ( $k\in\mathbb{N} >1$)

\(10^{n}=10^{3k+1}=10^{3k}.10\equiv 1.10\equiv 10\pmod {27}\)

\(18^{n}=18^{3k+1}\equiv (-9)^{3k+1}\equiv 0\pmod{27}\)

\(\Rightarrow A\equiv 10\pmod{27}\)

TH3: $n=3k+2$

\(10^{n}=10^{3k+2}=10^{3k}.100\equiv 100\equiv 19\pmod{27}\)

\(18^n=18^{3k+2}\equiv (-9)^{3k+2}\equiv 0\pmod {27}\)

\(\Rightarrow A\equiv 19\pmod {27}\)

13 tháng 12 2016

du 26 nha

13 tháng 12 2016

dư 26 nha bạn 

đúng 100% đó mình làm được 100 điểm mà

1/

Gọi số cần tìm là a

Ta có : 

a : 17 dư 8 

=> a - 8 chia hết cho 17

=> a + 17 - 8 chia hết cho 17

=> a + 9 chia hết cho 17

a : 25 dư 16

=> a - 16 chia hết cho 25

=> a + 25 - 16 chia hết cho 25

=> a + 9 chia hết cho 25

=> a + 9 thuộc BC ( 17 ; 25 )

Ta có :

17 = 17

25 = 52 

=> BCNN ( 17 ; 25 ) = 17 . 52 = 425

=> BC ( 17 ; 25 ) = B ( 425 ) = 

=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }

=> a = { -9 ; 416 ; 941 ; 1366 ; .... }

Mà a là số tự nhiên nhỏ nhất 

=> a = 416

Vậy số cần tìm là 416

14 tháng 12 2019

2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath

19 tháng 12 2016

1) \(\left|x+1\right|+3=8\\ \Rightarrow\left|x+1\right|=5\\ \Rightarrow x+1=5h\text{oặ}c=-5\\ \Rightarrow x=4;-6\)

2) \(n+6⋮n+2\\ \Rightarrow\left(n+2\right)+4⋮n+2\\ \Rightarrow4⋮n+2\\ \Rightarrow n+2\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\\ \Rightarrow n\in\left\{0;2\right\}\)

b) \(5n+27⋮4\\ \Rightarrow4n+n+27⋮4\\ \Rightarrow n+27⋮4\)

n+27 chia hết cho 4 khi n chia 4 dư 3

=> n=4k+3 ( k thuộc N)

3) Gọi thương của phép chia là : k

=> a=72k+69

a chia cho 18 dư 15

=> thường là 15

=> a=18.15+15=285

 

19 tháng 12 2016

vì sao lại có a chia 18 dư 15

 

13 tháng 2 2022

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

15 tháng 11 2014

d) Ta có: n + 6 chia hết cho n+1

              n+1 chia hết cho n+1

=> [(n+6) - (n+1)] chia hết cho n+1

=> (n+6 - n - 1) chia hết cho n + 1

=> 5 chia hết cho n+1

=> n+1 thuộc { 1; 5 }

Nếu n+1 = 1 thì n = 1-1=0

Nếu n+1=5 thì n= 5-1=4.

Vậy n thuộc {0;4}

15 tháng 11 2014

e) Ta có: 2n+3 chia hết cho n-2 (1)

              n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)

Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2

=> (2n+3 - 2n +4) chia hết cho n-2

=> 7 chia hết cho n-2

Sau đó xét các trường hợp tương tự như phần d.